A Radiant Visitor

In an historic first, Cancer For All welcomes a guest, Stacey McGowan, who is a physicist just starting a Ph.D. on something called Proton Therapy. She is a member of the Department of Oncology in Cambridge and you can find out more about her in her blog www.planningforprotons.com but today she is going to take us into her world with a simple guide to radiotherapy in the treatment of cancer.

As undergraduate there was a lot of pressure to know what you wanted to do after graduation. I knew I wanted to stay in physics as it was what I loved; I also knew I wanted a job that meant something to me. I did not want to work in finance or for a defence company. At the time I also didn’t think I wanted to go into research! This seemed to have left me with two options, to work in the energy industry, or in medicine.

A lot of people, including my undergrad self, are unaware of medical physicists and their role in the hospital and in treating patients. After an inspiring talk at a careers event from a medical physicist working in the NHS I knew that this was what I wanted to do after graduation: I wanted to be a medical physicist.

There are three main methods for treating cancer; surgery, chemotherapy and radiotherapy. A patient will usually receive one or more of these methods as part of their treatment. Of the cures achieved about 49% of them involve surgery, 11% involve chemotherapy and 40% involve radiotherapy. However of the NHS’s cancer budget surgery costs around 22%, chemotherapy 18% and radiotherapy just 5%. This makes radiotherapy both a successful treatment option, sometimes on its own but usually in combination with surgery or chemotherapy, and it is extremely cost effective. Despite this many people don’t really know what radiotherapy is and the prospect of it as a treatment often makes patients apprehensive. As much as radiation sounds scary, we are exposed to it all the time in nature from the sun and soil and nowadays in our homes from electrical devices including Wi-Fi and mobile phones. In addition, we use it in many diagnostic applications including X-rays, CT scanners and nuclear medicine.

The difference between the radiation used for cancer treatment and that received from other sources is in the amount of radiation, or dose, delivered. When I talk about dose, think of it in the same way you would any other type of medicine. An oncology doctor will prescribe a course of radiotherapy with a specific dose to be delivered to the patient every weekday for between 4 and 6 weeks. The radiation is delivered in the form of X-rays – highly energetic particles of light – delivered at higher energies and doses than those used to image a broken bone (Editor’s enlightenment: physicists tend to use the word ‘light’ to mean electromagnetic radiation of any wavelength – not just what the eye sees). To create such highly energetic light we need a powerful machine that can also precisely deliver the X-rays to the part of the patient where the cancer lies. This machine is known to the medical community as a linac, and to the scientific community as a linear accelerator!

The linacs used in the hospital differ from those used in physics research as medical linacs have a very different role and it is the medical physicists’ job to ensure they work as intended. The X-rays delivered to the patient will harm cells in their body, both cancerous and healthy, by damaging their DNA. It is extremely important that the cancer cells receive the dose necessary to kill them so that they cannot continue to grow, resulting in a cure. It is also a priority that healthy tissue receives the smallest possible radiation dose to ensure a low chance of long term side effects. To accomplish these goals linacs are designed to rotate about the patient so that the tumour can be targeted from more than one direction. Treatment is usually delivered in daily doses (known as fractions) over a period of a few weeks because healthy cells are better at repairing damage to their DNA than cancer cells, so they can recover from each dose, whereas damage will accumulate in the tumour cells. Cumulative DNA damage leads to cell death, stopping the cancer in its tracks.

Linacs can also shape the beam so that it will match the shape of the tumour, shielding the adjacent healthy tissue from the highest radiation doses. To produce such patient-specific and intricate treatments powerful computer programs are used to design the treatment based on images of the patient (usually CT scans). Oncologists and physicists will work together, distinguishing cancer tissue from healthy, choosing beam directions and designing beam shapes to ensure that the patient receives the optimal treatment.

Many types of cancers respond to radiotherapy including those of the lung, breast, prostate, brain and spine and the method can be used to treat both adults and children. The short term side effects from radiotherapy vary depending on the region being treated. For example, radiation of the abdominal area may cause digestive and bowel discomfort or if the head and neck is the target, the patient may experience difficulty swallowing and develop a dry mouth. Generally radiotherapy can lead to tiredness, nausea and skin irritation in the targeted areas. Long term side effects can include secondary cancer, more probably in young patients, and growth problems in children.

The future of radiotherapy in the NHS is to use of protons and not X-rays to deliver radiation for specific types of cancer. The nature of protons makes the aim of cure without complication more achievable and is the topic of my PhD research.

Unlike X-rays, protons have a finite range (we can choose where they stop) which reduces the amount of radiation exposure to the patient, making this form of therapy especially beneficial for spine and brain tumours in adults and for most cancers in children. Proton therapy is particularly attractive for treating childhood cancers because it is less likely than conventional radiotherapy to cause growth defects and other health complications, including the development of cancers in later life.

Despite the UK lacking the facilities necessary to treat cancer using proton radiotherapy, a limited number of NHS patients are currently offered this option abroad as part of the NHS Proton Overseas Programme. The Government also announced in April 2012 that two proton centres will be established in England, in Manchester and in London. It is hoped that these will start to treat patients by early 2017.

Stacey McGowan

Department of Oncology, University of Cambridge



3 comments on “A Radiant Visitor

  1. Pingback: Betrayed by Nature | Planning For Protons

  2. Pingback: Betrayed by Nature | Planning For Protons

  3. Pingback: Planning for Protons » Betrayed by nature

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s