Signs of Resistance

In Beware of Greeks … we noted that in one sort of leukemia at least, tumour cells have come up with an extraordinary way of escaping from the bone marrow where they start life into the circulation where they cause trouble – by releasing pieces of their own DNA that then break down the retaining barrier.

Keeping track of tumors

Curious behaviour though it may be, there’s nothing new about the idea of cells shedding bits of their genetic code – that was first shown to happen over 60 years ago. What is novel is the evidence that not only does this happen in a variety of cancer cells but that modern methods enable those fragments to be isolated from just a teaspoonful of blood: the sequence of the DNA can then be determined – which gives the mutational signature of the original tumour. A remarkable development has now shown that repeating these steps over a period of time can reveal the response of secondary tumours (metastases) to drug treatment (chemotherapy).

Untitled

One great advantage of this blood sampling method is that it is as near as makes no difference ‘non-invasive’. That is, it uses only a (small) blood sample and there’s no need for painful excavations to dig out tumour samples. The study, largely funded by Cancer Research UK, looked at three major cancers (breast, ovarian and lung) and identified specific mutations caused by drugs over a period of one to two years. For good measure they also took tumour samples to show that the mutation patterns found in circulating DNA did indeed represent what had gone on in the tumour itself. In other words, they had established what scientists like to call ‘proof of principle’ – i.e. we can do it!

There’s another more subtle advantage of this approach in that it gets round a problem we described in Molecular Mosaics: tumours are a mixture and the mutational signature differs depending on which bit you sample and sequence. The cell-free DNA fragments collected from blood are a gemisch – an averaged signature if you like – that may therefore give a better picture of the target for drug cocktails at any given time during tumour evolution.

Why is this so important?

There are two main reasons why it’s difficult to exaggerate the potential important of this step. The first is that metastasis accounts for over 90% of cancer deaths, the second that the fiendish ingenuity with which tumours negate chemotherapy, i.e. develop drug resistance, is one of the biggest challenges to successful treatment. So, the sooner changes that enable tumours to become insensitive to drugs can be detected the better in terms of adjusting the treatment regime. Even more exciting, however, is that notion that the DNA shed by cancers into the circulation may permit detection years or even decades earlier than is possible with any of the current methods (e.g., mammography) – with screening being carried put routinely from blood samples. Being even more optimistic, very early stage tumours may be particularly susceptible to appropriate drug combos, so that we might look forward to the day when chemotherapy replaces surgery as the first line of treatment for most cancers.

Reference

Murtaza, M. et al., (2013). Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112.

Advertisements

2 comments on “Signs of Resistance

  1. Pingback: Seeing the Invisible: A Cancer Early Warning System? | Betrayed by Nature: The War on Cancer

  2. Pingback: Spinning Out In Control | Betrayed by Nature: The War on Cancer

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s