A Taxing Inheritance

The centenary of the beginning of the First World War prompted me, as perhaps many others, to reflect on how successive generations have done since then in terms of what they’ve bequeathed to their offspring. I didn’t need to think for too long though, to find myself muttering ‘Thank heavens for science’—because most of the rest is a pretty dismal chronicle. I know, not all technological advances in the past one hundred years have been a cause of unrestrained joy but many of them transformed life in the most wonderful ways. Would that we could point to such success in other fields.

Our best defence may be to aver: “Man cannot control the current of events. He can only float with them and steer”, a saying attributed to Otto von Bismarck. If the ‘Iron Chancellor’ actually did utter those words it seems to me he was being coy beyond belief. He is, after all, generally credited with unifying Germany, seeing off the last French monarch (Napoleon III) and establishing the peaceful domination of Europe by the German Empire that lasted until long after his death—and setting up the first welfare state along the way. “The main thing is to make history, not to write it” sounds much more like Bismarck in full and frank mode.

Nature and Nurture

One form of history that we do write but indeed we cannot control comes in the form of the genetic material that we pass to the next generation. We’re all familiar with some of this legacy because we literally see it in physical resemblances and other attributes between parents and children (“He’s got his Mum’s eyes”) or shared by siblings (“Jack and Jill are wonderful musicians”). They’re shared because large chunks of the genetic code (i.e. DNA) are identical between the individuals concerned. But if conserved DNA makes for similarities, what of the differences—the fact that our parents and brothers look different to all the seven thousand million other people on the planet? Our unique features come from variations in the genetic code—odd changes in the units (bases) of DNA scattered through our genome. Called SNPs (pronounced ‘snips’ for single nucleotide polymorphisms), they’re what make the differences between us. In other words, a SNP is a difference in a single nucleotide—A, T, C or G—within a stretch of DNA sequence that is otherwise identical between two individuals. For example, you have AAGCCTA whereas I have AAGCTTA. These genetic variations that make individuals different are the basis of DNA fingerprinting.

There’s about three million SNPs scattered throughout the human genome (so, on average, you’d come across one in every 1,000 bases if you scanned your DNA from beginning to end) and they’re what makes each of us unique. Within ethnic groups common patterns of such variants confer characteristics (dark skin/light skin, tall/short, etc) and, with that in mind, you might guess that there will also be variants that make such groups more (or less) susceptible to diseases.

Of course, there’s an endless debate about the border between our genetic inheritance and how the world we experience makes us what we are—how much of Jack and Jill’s precocious talent is because Mum and Dad made them practice twelve hours a day from age five? Fortunately we can ignore nurture here and stick to genes because we’re trying to pin down the good and the bad of our genetic legacy.

What’s all this got to do with cancer?

A good bit is that we’re distinct from everyone else but still share family features. However, our genetic baggage may also contain some unwanted freebies—the most potent of which can give a helping hand to a variety of diseases, including cancers. Cancers are caused by damage to DNA—a build-up of changes, i.e. mutations, that affect the activity of proteins critically involved in controlling cell growth. For most cancers (90%) these mutations accumulate over the lifetime of the individual—they’re called “somatic mutations”—so you can’t blame anyone but yourself and Lady Luck. But about 10% get a kind of head start when someone is born with a key mutation. That is, the mutated gene came from either egg or sperm (so it’s a germline mutation). This effect gives rise to cancers that “run in families”: a critical mutation is passed from generation to generation so that children who inherit it have a greatly increased risk of developing cancer. Two of the most common cancers that can come in hereditary form are those of the breast and bowel.

Steeplechase

A mutational steeplechase leads to cancer. Of the tens of thousands of mutations that accumulate over time in a cancer cell, a small number of distinct “drivers” make the cancer develop (four are shown as Xs). Almost all mutations arise after birth, but about one in every ten cancers start because a person is unfortunate enough to be born with a mutation: they are already one jump ahead and are much more likely to get cancer than those born with a normal set of genes. The rate at which mutations arise is increased by exposure to carcinogens, e.g., in tobacco smoke.

Breast cancer is about twice as common in first-degree relatives of women with the disease as it is in the general population (you’re a first degree relative if you’re someone’s parent, offspring, or sibling). About 5% of all female breast cancers (men get the disease too but very rarely—about 1% of all breast cancers) arise from inherited mutations. In the 1990s two genes were identified that can carry such mutations. These are BRCA1 and BRCA2 and their abnormal versions can increase the lifetime risk of the disease to over 50%, compared with an average of about 10%. Since then heritable mutations in some other genes have also been shown to increase the risk.

Angelina Jolie

Angelina Jolie

A star turn

Breast cancer genetics came under the spotlight with the much-publicised saga of Angelina Jolie, the American film actress. Jolie’s mother and maternal grandmother had died of ovarian cancer and her maternal aunt from breast cancer—a family history that persuaded Jolie to opt for genetic testing that indeed revealed she was carrying a mutation in BRCA1 (BRCA1 and BRCA2 mutations account for about 10% of breast cancers and 15% of ovarian cancers). For Jolie the associated lifetime risk of breast cancer was estimated as 87%, prompting her to have a preventative double mastectomy, thereby reducing her risk to less than 5%. The months after she revealed her story saw the “Angelina effect”, a doubling in the number of women being referred for genetic testing for breast cancer mutations.

What’s all this got to do with SNPs?

The story so far is of the one in ten cancers that get kicked off by a powerful, inherited mutation that changes the action of the affected protein—the BRCAs being the best-known examples. However, the BRCAs and other known mutated genes account for only about 25% of familial breast cancers, meaning that for three quarters of cases the genetic cause remains unknown. And yet we know there is an inherited (genetic) cause simply because of the generational thread. Which brings us back to those other, more subtle tweaks to DNA that we mentioned—SNPs—alterations that don’t directly affect proteins, so they’re often called variants to distinguish them from mutations.

It seems very likely that the missing culprits are indeed SNPs—lots of them. These DNA variants each make a contribution so small that on its own would have no detectable effect on the chances that the carrier will get cancer. Their impact comes from a cumulative effect. They’re like pieces of straw, individually easily bent or broken but put a dozen of them together and you have a rope. Thus combinations of individually insignificant SNPs can raise the risk of cancer by, say, 10%—not a massive increase but not negligible either. Twins who are genetically identical have similar risks of developing breast cancer, consistent with the idea that many variants, each having a very small effect, can combine to give a substantial increase in risk. Very slowly, by sequencing lots of genomes, these rare variants are being identified. Given that clusters of appropriate variants confer risk, people with the “other” variant have, in effect, a degree of protection against cancer.

And in our more distant relatives?

All this comes from the huge effort that has gone into finding genetic variants linked to one of the most common cancers but, unsurprisingly, almost all the attention has focused on European women. Not before time, someone has got round to looking for breast cancer variants in East Asians who, after all, make up over one fifth of all the people in the world. Cai Qiuyin and his colleagues at the Vanderbilt University School of Medicine compared the genomes of over 20,000 cancer cases from China, Japan and South Korea with a similar number of disease-free controls. After much selecting and comparing of sequences, three particular DNA variants consistently associated with significant cancer risk. The variants were much less common in European women, suggesting that as the DNA keyboard has been strummed by evolution, distinct patterns associated with breast cancer have emerged in diverse populations.

Just two problems then. First it’s a huge task to assemble the lists of runners (and as the Asian results show, they will differ between ethnic groups). But the real challenge is yet to come. Almost all of these variants (99.9%) don’t change the sequence of proteins (i.e. how the proteins work). What they do is exert subtle effects on, for example, how much RNA or protein is made from a DNA gene at any time. At the moment we have little understanding of how this works, yet alone ideas on how to intervene to change the outcome.

Although identifying the BRCA genes that help to drive breast and ovarian cancers was a giant breakthrough, we still have no effective therapy for countering their malign influences. The intervening twenty-five years of effort have brought us to a new era of revealing the more subtle effects of variants. But the price we pay for unveiling the complete picture is perceiving just how tough is the therapeutic challenge.

Reference

Qiuyin Cai, et al. (2014). Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1. Nature Genetics 46, 886–890. doi:10.1038/ng.3041.

Advertisements

4 comments on “A Taxing Inheritance

  1. Pingback: Gentlemen! For goodness’ sake … | Betrayed by Nature: The War on Cancer

  2. Pingback: Cancer Genetics: Never Black or White | Betrayed by Nature: The War on Cancer

  3. Pingback: Holiday Reading (2) – Poking the Blancmange | Betrayed by Nature: The War on Cancer

  4. Pingback: In the beginning …  | Betrayed by Nature: The War on Cancer

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s