Dennis’s Pet Menace

As it happened, I’d already agreed to appear on Jeremy Sallis’ Lunchtime Live Show on BBC Radio Cambridgeshire – the plan being just to chat about cancery topics that might be of interest to listeners. Which would have been fine – if only The World Health Organization had left us in peace. But of course they chose last Tuesday to publish their lengthy cogitations on the subject of whether meat is bad for us – i.e. causes cancer.

Cue Press extremism: prime example The Times, quite predictably – they really aren’t great on biomedical science – who chucked kerosene on the barbie with the headline ‘Processed meats blamed for thousands of cancer deaths a year’.

But – to precise facts – and strictly it’s The International Agency for Research on Cancer, the cancer agency of the World Health Organization (WHO), that has ‘evaluated the carcinogenicity of the consumption of red meat and processed meat.’

But hang on … haven’t we been here before?

Indeed we have. As long ago as January 2012 in these pages we commented on the evidence that processed meat can cause pancreatic cancer and in May of the same year we reviewed the cogitations of the Harvard School of Public Health’s 28 year study of 120,000 people that concluded eating red meat contributes to cardiovascular disease, cancer and diabetes. To be fair, that history partially reflects why the WHO Working Group of 22 experts from 10 countries have taken so long to go public: they reviewed no fewer than 800 epidemiological studies! However, as the most frequent target for study was colorectal (bowel) cancer, that was the focus of their report released on 26th October 2015.

So what are we talking about?

Red meat, which means any unprocessed mammalian muscle meat, e.g., beef, veal, pork, lamb, mutton, horse or goat meat, that we usually cook before eating.

Processed meat: any meat not eaten fresh that has been salted, cured, smoked or whatever and commonly treated with chemicals to enhance flavour and colour and to prevent the growth of bacteria.

What did they say?

Processed meat is now classified as carcinogenic to humans – that is it goes into the top group (Group 1) of agents that cause cancer.

Red meat is probably carcinogenic to humans (Group 2A). Group 2B is for things that are possibly carcinogenic to humans.


Because 12 of the 18 studies they reviewed showed a link between consumption of processed meat and bowel cancer and because it’s known that agents commonly added to processed meat (nitrates and nitrites) can, when we eat them, turn into chemicals that can directly damage DNA, i.e. cause mutations and hence promote cancers.

For red meat 7 out of 15 studies showed positive associations of high versus low consumption with bowel cancer and there is strong mechanistic evidence for a carcinogenic effect i.e. when meat is cooked genotoxic (i.e. DNA-damaging) chemicals can be generated. They put red meat in the probably group because several of the studies that the Working Group couldn’t fault – and therefore couldn’t leave out – showed no association.

Stop woffling

My laptop likes to turn ‘woffling’ into ‘wolfing’. Maybe it’s trying to tell me something.

But is The WHO trying to tell us something specific about wolfing? To be fair, they have a go by estimating that every 50 gram portion of processed meat (say a couple of slices of bacon) eaten daily increases the risk of bowel cancer by about 18%. For red meat the data ‘suggest’ that the risk of bowel cancer could increase by 17% for every 100 gram portion eaten daily.

And what might that mean?

In the UK about 6 people in 100 get bowel cancer: if you take The WHO maximum estimate and have everyone eat 50 grams of processed meat every day of their lives such that 18% more of them would get bowel cancer, the upshot would be 7 people in 100 rather than 6. So it’s a small rise in a relatively small risk.

As the report points out, the Global Burden of Disease Project reckons diets high in processed meat cause about 34,000 cancer deaths per year worldwide and, if the reported associations hold up, the figure for red meat would be 50,000. Compare those figures with smoking that increases the risk of lung cancer by 20-fold and The WHO’s estimate of up to 6 million cancer deaths per year globally caused by tobacco use and 600,000 per year by alcohol consumption.

All of which suggests that it isn’t very helpful to lump meat eating, tobacco and asbestos in the same cancer-causing category and that The WHO could do worse than come up with a new classification system.

And the message?

Unchanged. Remember mankind evolved into the most successful species on the planet as a meat eater. As the advert used to say: It looks good, it tastes good and by golly it does you good – not least as a source of protein, vitamins and other nutrients. Do some exercise and eat a balanced diet – just in case you’ve forgotten, that means limit the amount of red meat (The WHO suggests no more than 30 grams a day for men, 25 g for women) so try fish, poultry, etc. Stick with the ‘good carbs’ (vegetables, fruits, whole grains, etc.), cut out the ‘bad’ (sugar – see Biting the Bitter Bullet), eat fishy fats not saturated fats and, to end on a technical note, don’t pig out.


‘The Divine Swine’ Castelnuovo Rangone, Italy

Meanwhile back on the Beeb

When the meat story broke I was a bit concerned that we might end up spending the whole of Lunchtime Live on how many bangers are lethal – especially as we were taking calls from listeners. Just in case things became a bit myopic I had Rasher up my sleeve. Rasher, you may recall, was Dennis the Menace‘s pet pig (in the The Beano‘s comic strip) who had a brother (Hamlet), a sister (Virginia Ham) and various other porky rellos. To bring it up to date we’d have introduced Sam Salami and Frank Furter and, of course, Rasher’s grandfather who was the model for the bronze statue named ‘The Divine Swine’ to be found in the little town of Castelnuovo Rangone in Pig Valley, Italy, the home of Parma ham.

But I shouldn’t have worried. All was well in the hands of Jeremy Sallis who, being a brilliant host, ensured that we mainly chatted about meatier matters than what to have for breakfast.


Press release: IARC Monographs evaluate consumption of red meat and processed meat.

Q&A on the carcinogenicity of the consumption of red meat and processed meat.

Carcinogenicity of consumption of red and processed meat. Published online October 26, 2015


Lethal ZIP codes

In Keeping Cancer Catatonic we retailed how, over 125 years ago, the London physician Stephen Paget came up with his ‘seed and soil’ idea to explain why it was that when cancers spread to distant sites around the body by getting into the circulation they didn’t simply stick to the first tissue they came across. Paget had spotted that cancers tend to have preferred sites for spreading: tumours of the eye tend to travel to the liver, rather than the much handier brain, and breast cancers, Paget’s speciality, commonly spread to the liver but also to the lungs, kidneys, spleen and bone. So his idea was that certain distant secondary sites are somehow made more receptive to tumor growth, just as soil can be prepared for seeds to sprout.

So the key question became ‘how?’ and it’s hung in the cancer air for well over a century during which we’ve made very little progress towards an answer – and it is crucial because the business of tumour cells spreading (metastasizing) causes most cancer deaths (over 90%).

But, at long last, things have started to move, largely due to the efforts of David Lyden and his colleagues at Weill Cornell Medical College. Their first astonishing contribution was to show that cells in primary tumours release messengers into the circulation and these, in effect, tag what will become landing points for wandering tumour cells – i.e., the target sites are determined before any tumour cells actually set foot outside the confines of the primary tumour.

After that seismic revelation the story advanced a step further (in Scattering the Bad Seed) with some molecular detail of how the sites are marked – an effect Lyden has christened ‘Bookmarking cancer’ – and how when tumour cells do settle in their new niche they may be kept dormant for many years before starting to expand.

Carrying the flag

The next chapter in the story, as retailed in Holiday Reading (4) – Can We Make Resistance Futile?, revealed that the message is carried by small sacs – like little cells – called exosomes that are released from tumour cells. These float around the circulation until they find their target site, whereupon they plant the flag by setting off a chain reaction that produces a sticky protein – fibronectin – a kind of glue for immune cells and tumour cells.

That is all truly amazing stuff but, as we noted in Holiday Reading (4) – Can We Make Resistance Futile?, a recurring theme in science is that one answer merely poses the next question – in this case ‘what’s the messenger?’

As in all the best thrillers, the authors have kept us in suspense to the last, helped presumably by their not knowing the answer. But in this week’s Nature (Oct. 28, 2015) comes the denoument to this whodunit.

Mister postman look and see …

Many moons ago an outfit called the Marvelettes had a No. 1 hit with Please Mr. Postman and somewhat later the Fab Four did a re-hash that met with equal success. Perhaps we should have asked them how nature would go about directing little packages around the body. John, Ringo and the lads would, with their earthy, Liverpudlian logic, have pointed out the triviality of the problem of exosome addressing. ‘It’s not like you’re sending stuff all over the world, is it? You’ve only got a few targets – the major organs of the body. So a dead simple code will do. You know your messengers are proteins – ’coz they do everything – OK? So, pick a protein that comes in two bits with a few variants of each: mix and match and there’s yer postcodes. Now … what was that ditty about yellow subsurface vessels …’

And so it came to pass …

And the messenger is …

A family of proteins called integrins whose job is to span the membranes of cells, thereby promoting cell-cell interactions. They are indeed made of two different chains stuck together (called α (alpha) and β (beta)) and the upshot is that our cells can make about 24 unique integrins – more than enough to form a coded address system to direct tumour cells around the body. Well done lads!

What Ayuko Hoshino, David Lyden and their many collaborators did was to tag exosomes released from various types of cancer cell with a fluorescent dye and inject them into mice. The fluorescent label enabled them to track the exosomes and it turned out that, for a variety of cancer cells (breast, pancreatic, colorectal, lung, melanoma and pediatric) the exosomes travelled to the organs associated with metastasis (e.g., breast cancer exosomes stuck in the lungs, pancreatic cancer exosomes in the liver, etc). In other words exosome spread mimicked the pattern of the tumour from which they were derived. Once they had landed the exosomes set about reprogramming the organ sites to make a fertile microenvironment capable of supporting tumor cell growth in a new colony.

When they looked at the exosome proteins they found a particular member of the integrin family flagged each organ-specific site. Thus α6β4 promotes lung metastasis, αvβ5 homes in on the liver, αvβ3 on the brain, etc.

MapFinding a home

To spread around the body (metastasise) primary tumours first release small sacs (exosomes) carrying protein tags (integrins). Moving through the circulatory system the integrin tags home in to specific addresses found on different organs. The effect of exosomes sticking to target sites is to prepare the ground for cells released by the tumour to adhere and colonise.

Down the tube

You could think of primary tumours as being a bit like us when we move to a new city and try to find a des. res. in a place you don’t know. We could just ramble round the subway system until something catches our eye but that might take for ever. Much more efficient is to ask someone with local knowledge where would be good spots to target. For disseminating tumours their exosomes are the scouts who do the foot-slogging: the protein signatures on the surface of these small, tumour-secreted packages home in on postcodes that define a desirable locale for metastatic spread.

Shooting the messenger

An obvious question is ‘If exosomes are critical in defining metastatic sites, can you block their action – and what happens when you do?’ In preliminary experiments Hoshino & Co showed that either knockdown of specific integrins or blocking the capacity of these proteins to stick to their targets (with a specific antibody or short synthetic peptides) significantly reduced exosome adhesion, thereby blocking pre-metastatic niche formation and liver metastasis.

A new beginning?

We described these fabulous results as the denouement but, of course, it isn’t. As Mr. Churchill remarked in a somewhat different context: ‘Now this is not the end.’ It is rather a step to answering an old question but it’s incredibly exciting. If screening for exosomes leads to the detection of cancer not just years but perhaps decades earlier than can be achieved by present methods and if blocking their action can keep metastasis at bay, then the field of cancer will be utterly transformed.


Hoshino, A. et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature doi:10.1038/nature15756.

Ruoslahti, E. (1996). RGD and Other Recognition Sequences for Integrins. Annual Review of Cell and Developmental Biology 12, 697-715.

Mutating into Gold

It’s probably just as well that few us are aware that the bodies we live in are a battlefield – the cells and molecules that make us are in constant strife to ensure our survival. The lid is lifted from time to time – when we get a cold or pick up some other infection and our immune response sorts it out but not without giving us a headache or a runny nose, just to let us know it’s on the job. By and large though, we plough our furrow in glorious ignorance.

Saving our cells

Perhaps the most important of all the running battles is to save our DNA – that is, to repair the damage continuously suffered by our genetic material so we can carry on. It’s an uphill struggle. The DNA in one of our cells can take up to a million hits every day – and the bombardment comes from every direction: from radiation, air pollution and carcinogens in some of the food we eat. And, of course, we don’t need to mention cigarette smoke.

Damaged chromosomes (blue arrows)

Damaged chromosomes    (blue arrows)

On top of all that cells have to make a new DNA copy every time they reproduce – and we do a lot of that: recall that you set sail on the journey of life as one single, fertilized egg cell and now look at you: a clump of ten trillion (1013) cells that, just to stay as you are, has to make one million new cells every second. What’s more some of your cells deliberately break their own DNA in a process called ‘gene shuffling’ that goes to make the finished product of your aforementioned immune system. The biochemical machinery that does these jobs is mighty efficient but nobody’s perfect – except, of course, for John Eales, Australia’s most successful rugby union captain, nicknamed “Nobody” because “Nobody’s perfect”. When the three thousand million base-pairs of DNA are stuck together for a new cell there’s a mistake about once in every million units added – but a kind of quality control check (mismatch repair) then fixes most of these, so that the overall error is about one in a thousand million. That’s one example of the nifty ways evolution has come up with to fix the damage suffered by our genetic material from all this replicating, assaulting and constructing.

Keeping the show on the road

The overall upshot of the repair machinery is that less than one mutation per day becomes fixed in our genomes – and thus passed on to succeeding generations of cells. The range of things that can damage DNA – and hence the different forms that damage can take – tells you that there must be several different repair systems and indeed we now know that about 200 genes and their protein products have a hand in some repair process or another. There’s so much to know that DNA damage and repair has its own data-base called, inevitably, REPAIRtoire. Much of what we know is, to a considerable extent, thanks to the labours of Tomas Lindahl, Paul Modrich and Aziz Sancar who have just been jointly awarded this year’s Nobel Prize in Chemistry. Because damage to DNA – aka mutations – drives the development of cancers you might suppose that in these pages we will have met these gentlemen before – and indeed we have, if not by name.

Tomas Lindahl Paul Modrich Aziz Sancar

Tomas Lindahl                      Paul Modrich                       Aziz Sancar

Winners of the 2015 Nobel Prize in Chemistry

Forty odd years ago much of the above would have bewildered cell biologists. Thirty years before then, in 1944, Oswald Avery, Colin MacLeod and Maclyn McCarty had shown for the first time that genes are composed of DNA, a finding confirmed in 1952 by Alfred Hershey and Martha Chase in a classic experiment using a virus that infects and replicates within a bacterium. But with the acceptance that, however improbable, our genetic material was indeed made of DNA there came the assumption that it must be very stable. After all, if it carried our most valuable possession then surely it had to be made of molecular granite, absolutely resistant to any kind of chemical change or degradation. Had the bewildered boffins been told that in the twenty-first century we would be sequencing woolly mammoth DNA from samples that are millions of years old they would have been confirmed in their view.

It was Tomas Lindahl in the early 1970s who demonstrated that, although DNA is indeed more stable than its close rello RNA (the intermediate in making proteins) it nevertheless decays quite rapidly under normal conditions – it’s only when sealed in permafrost or blobs of amber that it becomes frozen in time. Lindahl realized that for life based on DNA to have evolved there had to be repair systems that could sustain our genetic material in a functional state and he went on to resolve how one of these did it. Aziz Sancar has worked particularly on the circadian clock (discovering that CRY is a clock protein) and how cells repair ultraviolet radiation damage to DNA: people born with defects in this system develop skin cancer if they are exposed to sunlight. Paul Modrich has contributed mainly to our knowledge of mismatch repair.

Lindahl, Modrich, Sancar and their colleagues over many years haven’t come up with the philosopher’s stone – the chemists still can’t transmute base metals into gold without the aid of a particle accelerator. But what they have done is much more useful for mankind. Revealing the detail of how genome maintenance works has already lead to new cancer treatments and from this beginning will come greater benefits as time goes by. They should enjoy the proceeds of turning molecular knowledge if not to gold then into Swedish kronor (8 million of them) – for the rest of the world it’s a bargain.


Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709-715.

Yang YG, Lindahl T, Barnes DE. (2007). Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873-886.

Shao, H, Baitinger, C, Soderblom, EJ, Burdett, V, and Modrich, P. (2014). Hydrolytic function of Exo1 in mammalian mismatch repair. Nucleic Acids Research 42, 7104-7112.

Tan C, Liu Z, Li J, Guo X, Wang L, Sancar A, Zhong D. (2015). The molecular origin of high DNA-repair efficiency by photolyase. Nat Commun. 6, 7302.