New Era … Or Déjà vu?

 

Readers who follow events in the US of A – beyond the bizarre unfolding of the selection of the Republican Party’s nominee for President of the United States – may have noticed that the presidential incumbent put forward another of his bright ideas in the 2016 State of the Union Address. The plan launched by President Obama is to eliminate cancer and to this end $1 billion is to go into a national initiative with a strong focus on earlier detection, immunotherapy and drug combinations. It’s called a Moonshot’, presumably as a nod to President Kennedy’s 1961 statement that America should land a man on the moon (and bring him back!).011316_SOTU_THUMB_LARGE

A key aim of Moonshot is to improve all-round collaboration and to ‘bring about a decade’s worth of advances in five years.’ Part of this involvesbreaking down silos’ – which apparently is business-speak (and therefore a new one on me) for dealing with the problem of folk not wanting to share things with others in the same line of work. So someone’s spotted that science and medicine are not immune to this frailty.silo_mentality

On the home front …

In fact the President could be said to be slightly off the pace as, in October 2015, Cancer Research UK launched ‘Grand Challenges’ – a more modest (£100M) drive to tackle the most important questions in cancer. They’ve pinpointed seven problems and, helpfully, six of these will not be new to dedicated readers of these pages. They are:

  1. To develop vaccines (i.e. immunotherapy) to prevent non-viral cancers;
  2. To eradicate the 200,000 cancers caused each year by the Epstein Barr Virus;
  3. To understand the mutation patterns caused by different cancer-causing events;
  4. To improve early detection;
  5. To map the complexity of tumours at the molecular and cellular level;
  6. To find a way of targetting the cancer super-controller MYC;
  7. To work out how to target anti-cancer drugs to specific cells in the body.

{No/. 2 is the odd one out so it clearly hasn’t been too high a priority for me but we did talk about Epstein Barr Virus in Betrayed by Nature – phew!}.

But wait a minute

Readers of a certain age may be thinking this all sounds a bit familiar and, of course, they’re right. It was in 1971 that President Richard Nixon launched the ‘war on cancer’, the aim of which was to, er, to eliminate cancers. Given that 45 years on in the USA there’ll be more than 1.6 million new cases of cancer and 600,000 cancer deaths this year, it’s tempting to conclude that all we’ve learned is that things are a lot more complicated than we ever imagined.

Well, you can say that again. Of the several hundred genes that we now know can play a role in cancers, two are massively important MYC (‘mick’) and P53. Screen the scientific literature for research publications with one of those names in the title and you get, wait for it, over 50,000 for ‘MYC’ and for P53 over 168,000. It’s impossible to grasp how many hours of global sweat and toil went into churning out that amount of work – and that’s studies of just two bits of the jigsaw!

So 45 years of digging have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and cancer rates remain below 5% 1%, respectively. For these and other cancers there has been very little progress.

So 45 years of digging away have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and pancreatic cancer rates remain below 5% and 1%, respectively. For these and other cancers there has been very little progress.

All systems go?

Well, maybe. Moonshot is aimed at better and earlier diagnosis, more precise surgery and radiotherapy, and more drugs that can be better targeted. Oh, and bearing in mind that one in three cancers could be prevented, keeping plugging away at lifestyle factors.

How will it fare? Well, now we’re in the genomic era we can be sure that the facts mountain resulting from 45 years of collective toil will be as a molehill to the Everest of data now being mined and analysed. From that will emerge, we can assume with some confidence, a gradual refinement of the factors that are critical in determining the most effective treatment for an individual cancer.

Just recently we described in The Shape of Things to Come the astonishingly detailed picture that can be drawn of an individual tumour when it’s subjected to the full technological barrage now available. As we learn more about the critical factors, immunotherapy regimens will become more precise and the current response rate of about 10% of patients will rise.

Progress will still be slow, as we noted in The Shape of Things to Come – don’t expect miracles but, with lots of money, things will get better.

Advertisements