Invisible Army Rouses Home Guard

Writing this blog – perhaps any blog – is an odd pastime because you never really know who, if anyone, reads it or what they get out of it. Regardless of that, one person that it certainly helps is me. That is, trying to make sense of the latest cancer news is one of the best possible exercises for making you think clearly – well, as clearly as I can manage!

But over the years one other rather comforting thing has emerged: more and more often I sit down to write a story about a recent bit of science only to remember that it picks up a thread from a piece I wrote months or sometimes years ago. And that’s really cheering because it’s a kind of marker for progression – another small step forward.

Thus it was with this week’s headline news that a ‘cancer vaccine’ might be on the way. In fact this development takes up more than one strand because it’s about immunotherapy – the latest craze – that we’ve broadly explained in Self Help Part-1Gosh! Wonderful GOSH and Blowing-up Cancer and it uses artificial nanoparticles that we met in Taking a Swiss Army Knife to Cancer.

Arming the troops

What Lena Kranz and her friends from various centres in Germany described is yet another twist on the idea of giving our inbuilt defence – i.e. the immune system – a helping hand to tackle tumours. They made small sacs of lipid called nanoparticles (they’re so small you could get 300 in the width of a human hair), loaded them with bits of RNA and injected them into mice. This invisible army of fatty blobs was swept around the circulatory system whereupon two very surprising things happened. The first was that, with a little bit of fiddling (trying different proportions of lipid and RNA), the nanoparticles were taken up by two types of immune cells, with very little appearing in any other cells. This rather fortuitous result is really important because it means that the therapeutic agent (nanoparticles) don’t need to be directly targetted to a tumour cell – thus avoiding one of the perpetual problems of therapy.

The second event that was not at all a ‘gimme’ was that the immune cells (dendritic cells and macrophages) were stimulated to make interferon and they also used the RNA from the nanoparticles as if it was their own to make the encoded proteins – a set of tumour antigens (tumour antigens are proteins made by tumour cells that can be useful in identifying the cells. A large number of have now been found: one group of tumour antigens includes HER2 that we met as a drug target in Where’s That Tumour?)

The interferon was released into the tumour environment in two waves, bringing about the ‘priming’ of T lymphocytes so that, interacting via tumour antigens, they can kill target cells. By contrast with taking cells from the host and carrying out genetic engineering in the lab (Gosh! Wonderful GOSH), this approach is a sort of internal re-wiring achieved by giving a sub-set of immune system cells a bit of genetic code (in the form of RNA).

TAgs RNA Nano picNanoparticle cancer vaccine. Tiny particles (made of lipids) carry RNA into cells of the immune system (dendritic cells and macrophages) in mice. A sub-set of these cells releases a chemical signal (interferon) that promotes the activation of T lymphocytes. The imported RNA is translated into proteins (tumour antigens) – that are presented to T cells. A second wave of interferon (released from macrophages) completes T cell priming so that they are able to attack tumour cells by recognizing antigens on their surface (Kranz et al. 2016; De Vries and Figdor, 2016).

So far Kranz et al. have only tried this method in three patients with melanoma. All three made interferon and developed strong T-cell responses. As with all other immunotherapies, therefore, it is early days but the fact that widely differing strategies give a strong boost to the immune system is hugely encouraging.

Other ‘cancer vaccines’

As a footnote we might add that there are several ‘cancer vaccines’ approved by the US Food and Drug Administration (FDA). These include vaccines against hepatitis B virus and human papillomavirus, along with sipuleucel-T (for the treatment of prostate cancer), and the first oncolytic virus therapy, talimogene laherparepvec (T-VEC, or Imlygic®) for the treatment of some patients with metastatic melanoma.

How was it for you?

As we began by pointing out how good writing these pieces to clarify science is for me, the question for those dear readers who’ve made it to the end is: ‘How did I do?’


Kranz, L.M. et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016) doi:10.1038/nature18300.

De Vries, J. and Figdor, C. (2016). Immunotherapy: Cancer vaccine triggers antiviral-type defences.Nature (2016) doi:10.1038/nature18443.



One comment on “Invisible Army Rouses Home Guard

  1. Pingback: Outsourcing the Immune Response | Betrayed by Nature: The War on Cancer

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s