A Musical Offering 

It’s generally accepted that Johann Sebastian Bach was one of the greatest, if not the greatest, musical composer of all time. In well over 1000 compositions he laid down the framework upon which rested virtually all Western music of the following 200 years. Of these works, The Musical Offering, written in 1747, is a collection of pieces based on a single theme that has been described as the most significant piano composition in history.

Along the way to becoming a unique composer, Bach married twice and sired twenty children, only ten of whom survived into adulthood. Those figures highlight another way in which JSB was something of a freak because, in 1750 when he died aged 65, the average life expectancy in Europe was under 40 years. For that reason cancers, being primarily being diseases of old age, were much less prominent then than now when, on average, we live to be over 80 and cancers account for about one in three deaths.

It’s safe to say that in the 18th century neither Bach nor anyone else knew anything of cancer yet alone that our genetic material carries tens of thousands of genes – a kind of molecular keyboard upon which cellular machinery plays to produce an output of proteins that distinguishes one cell type from another but is also continuously varying, even within individual cells. Bach would have been fascinated by this fluctuating molecular mosaic that, through the wonders of modern sequencing methods, we can display as ‘heat maps’ showing which genes are turned on (being expressed) and to what level.

Musical genes. Left: a heat map showing the pattern of genes being expressed at a given time in several different types of cell. Red: high expression level; green low expression. On the right is the same information transformed into musical notation using the Gene Expression Music Algorithm, GEMusicA (from Staege 2016).

With commendable vision a chap by the name of Martin Staege has come up with an alternative way of looking at the rather mind-blowing picture conveyed by heat maps. Staege is in the Martin Luther University of Halle-Wittenberg – appropriately as Bach’s eldest son studied at the University of Halle. His idea is that gene expression patterns can be transformed into sounds characterized by their frequency (pitch) and tone duration. In other words you can make genes play tunes – and what’s more compare the notes from different cell samples (e.g., normal and tumour cells) so that you can ‘hear’ the differences in gene expression.

Remarkable or what?!

Unsurprisingly, gene tunes sound more Alban Berg than Magic Flute, prompting the redoubtable Dr. Staege to go one step further by producing an algorithm that fits gene themes as best it can to more singable pieces – so you get a kind of difference melody. I don’t think Beethoven or Wagner would see this biological music as a threat and they might, like me, ask ‘what’s the point?’

To which, I guess, the answers are ‘It’s clever and fun’. It’s also yet another way of showing the power of DNA as an information storage medium, and making the point that in this guise it may, in due course, make a massive impact on our lives – much more mundane than musical genes but hugely more useful.


Staege, M. S. (2016). Gene Expression Music Algorithm-Based Characterization of the Ewing Sarcoma Stem Cell Signature. Stem Cells International
Volume 2016, Article ID 7674824, 10 pages http://dx.

Staege, M. S. (2015). A short treatise concerning a musical approach for the interpretation of gene expression data. Sci. Rep. 5, 15281.








Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s