Desperately SEEKing …

These days few can be unaware that cancers kill one in three of us. That proportion has crept up over time as life expectancy has gone up — cancers are (mainly) diseases of old age. Even so, they plagued the ancients as Egyptian scrolls dating from 1600 BC record and as their mummified bodies bear witness. Understandably, progress in getting to grips with the problem was slow. It took until the nineteenth century before two great French physicians, Laënnec and Récamier, first noted that tumours could spread from their initial site to other locations where they could grow as ‘secondary tumours’. Munich-born Karl Thiersch showed that ‘metastasis’ occurs when cells leave the primary site and spread through the body. That was in 1865 and it gradually led to the realisation that metastasis was a key problem: many tumours could be dealt with by surgery, if carried out before secondary tumours had formed, but once metastasis had taken hold … With this in mind the gifted American surgeon William Halsted applied ever more radical surgery to breast cancers, removing tissues to which these tumors often spread, with the aim of preventing secondary tumour formation.

Early warning systems

Photos of Halsted’s handiwork are too grim to show here but his logic could not be faulted for metastasis remains the cause of over 90% of cancer deaths. Mercifully, rather than removing more and more tissue targets, the emphasis today has shifted to tumour detection. How can they be picked up before they have spread?

To this end several methods have become familiar — X-rays, PET (positron emission tomography, etc) — but, useful though these are in clinical practice, they suffer from being unable to ‘see’ small tumours (less that 1 cm diameter). For early detection something completely different was needed.

The New World

The first full sequence of human DNA (the genome), completed in 2003, opened a new era and, arguably, the burgeoning science of genomics has already made a greater impact on biology than any previous advance.

Tumour detection is a brilliant example for it is now possible to pull tumour cell DNA out of the gemisch that is circulating blood. All you need is a teaspoonful (of blood) and the right bit of kit (silicon chip technology and short bits of artificial DNA as bait) to get your hands on the DNA which can then be sequenced. We described how this ‘liquid biopsy’ can be used to track responses to cancer treatment in a quick and non–invasive way in Seeing the Invisible: A Cancer Early Warning System?

If it’s brilliant why the question mark?

Two problems really: (1) Some cancers have proved difficult to pick up in liquid biopsies and (2) the method didn’t tell you where the tumour was (i.e. in which tissue).

The next step, in 2017, added epigenetics to DNA sequencing. That is, a programme called CancerLocator profiled the chemical tags (methyl groups) attached to DNA in a set of lung, liver and breast tumours. In Cancer GPS? we described this as a big step forward, not least because it detected 80% of early stage cancers.

There’s still a pesky question mark?

Rather than shrugging their shoulders and saying “that’s science for you” Joshua Cohen and colleagues at Johns Hopkins University School of Medicine in Baltimore and a host of others rolled their sleeves up and made another step forward in the shape of CancerSEEK, described in the January 18 (2018) issue of Science.

This added two new tweaks: (1) for DNA sequencing they selected a panel of 16 known ‘cancer genes’ and screened just those for specific mutations and (2) they included proteins in their analysis by measuring the circulating levels of 10 established biomarkers. Of these perhaps the most familiar is cancer antigen 125 (CA-125) which has been used as an indicator of ovarian cancer.

Sensitivity of CancerSEEK by tumour type. Error bars represent 95% confidence intervals (from Cohen et al., 2018).

The figure shows a detection rate of about 70% for eight cancer types in 1005 patients whose tumours had not spread. CancerSEEK performed best for five types (ovary, liver, stomach, pancreas and esophagus) that are difficult to detect early.

Is there still a question mark?

Of course there is! It’s biology — and cancer biology at that. The sensitivity is quite low for some of the cancers and it remains to be seen how high the false positive rate goes in larger populations than 1005 of this preliminary study.

So let’s leave the last cautious word to my colleague Paul Pharoah: “I do not think that this new test has really moved the field of early detection very far forward … It remains a promising, but yet to be proven technology.”


D. Cohen et al. (2018). Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 10.1126/science.aar3247.


One comment on “Desperately SEEKing …

  1. Pingback: Sticky Cancer Genes | Betrayed by Nature: The War on Cancer

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s