Now You See It


In the pages of this blog we’ve often highlighted the power of fluorescent tags to track molecules and see what they’re up to. It’s a method largely pioneered by the late Roger Tsien and it has revolutionized cell biology over the last 20 years.

In parallel with molecular tagging has come genetic engineering that permits novel genes, usually carried by viruses, to be introduced to cells and animals. As we saw in Gosh! Wonderful GOSH and Blowing Up Cancer, various ‘virotherapy’ approaches have been used with some success to treat leukemias and skin cancers and a trial is underway in China treating metastatic non-small cell lung cancer.

A major aim of genetic engineering is to be able to control the expression of novel genes (i.e. protein production from the encoding DNA sequence) that have been introduced into an animal — in the jargon, to ‘switch’ on or off at will. That can be done but only by administering a drug or some other regulator, either in drinking water, by injection or squirting directly into the lungs. An ideal would be something that’s more controlled and less invasive. How about shining a light on the relevant spot?!

Wacky or what?

That may sound as though we’re veering towards science fiction but reflect for a moment that every animal with vision, however rudimentary, sees by transforming light entering the eyes into electrical signals that the brain turns into a picture of the world around them. This relies on photoreceptor proteins that span the membranes of retinal cells.

How vision works. Light passes through the lens and falls on the retina at the back of the eye. The photoreceptor cells it activates are rod cells (that respond to low light levels — there’s about 100 million of them) and cone cells (stimulated by bright light). Sitting across the membranes of these cells are photoreceptor proteins — rhodopsin in rods and photopsin in cones. Photoreceptor proteins change shape when light falls on them — the driver for this being a small chemical attached to the proteins called retinal, one of the many forms of vitamin A. This shape change allows the proteins to ‘talk’ to the inside of the cell, i.e. to interact with other proteins to switch on enzymes and change the level of ions (sodium and calcium). The upshot is that the signal is passed through neural cells in the optic nerve to the brain where the incoming light signals are processed into the images that we perceive. © Arizona Board of Regents / ASU Ask A Biologist.

The seemingly far-fetched notion of controlling genes by light was floated by Francis Crick in 1999. The field was launched in 2002 by Boris Zemelman and Gero Miesenböck who engineered neurons to express one form of rhodopsin. This gave birth to the subject of optogenetics — using light to control cells in living tissues that have been genetically modified to express light-sensitive ion channels such as rhodopsin. By 2010 optogenetics had advanced to being the ‘Method of the Year’ according to the research journal Nature Methods.

Dropping like flies

One of the most dramatic demonstrations of the power of optogenetics has come from Robert Kittel and colleagues in Würzburg and Göttingen who made a mutant form of a protein called channelrhodopsin-1 (found in green algae) and expressed it in fruit flies (Drosophila melanogaster). The mutant protein (ChR2-XXL) carries very large photocurrents of ions (critically sodium and calcium) with the result that photostimulation can drastically change the behaviour of freely moving flies.

Light-induced stimulation of motor neurons in adult flies expressing a mutant form of rhodopsin ChR2-XXL. Click to run movie.

Left hand tube: Activation of ChR2-XXL in motor neurons with white light LEDs caused reversible immobilization of adult flies. In contrast (right hand tube) flies expressing normal (wild-type) channelrhodopsin-2 showed no response. From Dawydow et al., 2014.

Other optogenetic experiments on flies can be viewed on You Tube, e.g., the TED talk of Gero Miesenböck and the Manchester Fly Facility video of fly maggots, engineered to have a channel protein (channelrhodopsin) in their neurons, responding to blue light.

Of flies … and mice … and men

This is stunning science and it’s opened a new vista in neurobiology. But what about the things we’re concerned with in these pages — treating diseases like diabetes and cancer?

Scheme showing how genetic engineering can make the release of insulin from cells controllable by light. Normally cells of the pancreas (beta cells) take up glucose when its level in the circulation rises (via a glucose transporter protein). The rise in glucose triggers ATP production in the cell. This in turn causes potassium channels in the membrane to close (called depolarization) and this opens calcium channels. The increase in calcium in the cell drives insulin secretion. From Kushibiki et al., 2015.

The left-hand scheme above shows how glucose triggers the pancreas to produce the hormone insulin. Diabetes occurs when either the pancreas doesn’t make enough insulin or when cells of the body don’t respond properly to insulin by taking up glucose.

As a first step to see whether optogenetic regulation of calcium levels in pancreatic cells could trigger insulin release, Toshihiro Kushibiki and colleagues at the National Defense Medical College in Saitama, Japan engineered the channelrhodopsin-1 protein into mouse cells and hit them with laser light of the appropriate frequency. An hour after a short burst of light (a few seconds) the insulin levels had doubled.

The photo below shows a clump of these cells: the nuclei are blue and the channel protein (yellow) can be seen sitting across the cell membranes.


Cells expressing a fluorescently tagged channelrhodopsin protein (yellow). Nuclei are blue. From Kushibiki et al., 2015.



To show that this could work in animals they suspended the engineered cells in a gel and inoculated blobs of the goo under the skin of diabetic mice. Laser burst again: blood glucose levels fell and they showed this was due to the irradiated, implanted cells producing insulin.

Fast forward three years

Those brilliant results highlighted the potential of optogenetic technology as a completely novel approach to a disease that afflicts over 300 million people worldwide.

Scheme showing a Smartphone can be used to regulate the release of insulin from engineered cells implanted in a mouse with diabetes. The key events in the cell are that the light-activated receptor turns on an enzyme (BphS) that in turn controls a transcription regulator (FRTA) that binds to a DNA construct to switch on the Gene Of Interest (GOI) — in this case encoding insulin. (shGLP1, short human glucagon-like peptide 1, is a hormone that has the opposite effect to insulin). From Shao et al., 2017.

In a remarkable confluence of technologies Jiawei Shao and colleagues from a number of institutes in Shanghai, including the Shanghai Academy of Spaceflight Technology, and from ETH Zürich have recently published work that takes the application of optogenetics well and truly into the twenty-first century.

They figured that, as these days nearly everyone lives with their smartphone, the world could use a diabetes app. Essentially they designed a home server SmartController to process wireless signals so that a smartphone could control insulin production by cells in gel capsules implanted in mice. There are differences in the genetic engineering of these cells from those used by Kushibiki’s group but the critical point is unchanged: laser light stimulates insulin release. The capsules carry wirelessly powered LEDs.

The only other thing needed is to know glucose levels. Because mice are only little and they’ve already got their gel capsule, rather than implanting a monitor they took a drop of blood from the tail and used a glucometer. However, looking ahead to human applications, continuous glucose monitors are now available that, placed under the skin, can transmit a radio signal to the controller and, ultimately, it will be possible for the gel capsules to have a built-in battery plus glucose sensor and the whole thing could work automatically.

Any chance of illuminating cancer?

This science is so breathtaking it seems cheeky to ask but, well, I’d say ‘yes but not just yet.’ So long as the ‘drug’ you wish to use can be made biologically (i.e. from DNA by the machinery of the cell), rather than by chemical synthesis, Shao’s Smartphone set-up can readily be adapted to deliver anti-cancer drugs. This might be hugely preferable to the procedures currently in use and would offer an additional advantage by administering drugs in short bursts of lower concentration — a regimen that in some mouse cancer models at least is more effective.


Dawydow, A., Kittel, R.J. et al., 2014. Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. PNAS 111, 13972-13977.

Kushibiki et al., (2015). Optogenetic control of insulin secretion by pancreatic beta-cells in vitro and in vivo. Gene Therapy 22, 553-559.

Shao, J. et al., 2017. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Science Translational Medicine 9, Issue 387, eaal2298.


Flipping The Switch

If you spend even a little time thinking about cancer you’ll have realised that it’s very odd – and one oddity in particular may have struck you. A general rule is that it can arise anywhere in the body: breast, bowel and lung are commonly affected, but the more than 200 different types of cancer pop up in lots of other organs (e.g. brain, pancreas), albeit less often. But what about those places of which you hear almost nothing? For example, it’s very unusual to hear of heart or muscle cancers. Which raises the obvious question of why? Is there something going on in these tissues that counters cancer development – acts in some way to slow down tumour formation? And if there is, shouldn’t we find out about it?

Zuzana Keckesova, Robert Weinberg and their colleagues from the Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology and other centres have been scratching their heads over this for a while and they’ve recently published an answer – or, at least, one of the answers.

Getting energy from food

To see how their result fits into the jigsaw puzzle we need a quick recap on the chemical processes that go on in cells to keep them alive, aka, metabolism. Occurring in almost all organisms, glycolysis is a central metabolic pathway in which a series of chemical reactions breaks down sugars into smaller compounds, the energy released being captured as ATP (adenosine triphosphate). Needless to say, it’s complicated – there’s 10 steps and it took the best part of 100 years to work them out completely.

Prising open the black box

The story began with the French obsession with wine (which by now they’ve shared with the rest of the world, bless ’em), specifically why sometimes wine tastes horrible. So they put Louis Pasteur on the case and in 1857 he showed that it was all to do with oxygen: if air (oxygen) is present during the fermentation process the yeast cells will grow but fermentation (i.e. alcohol production) will decrease. This showed that living microorganisms were needed for fermentation and led Eduard Buchner to extract the enzymes from yeast and show that they were sufficient to convert glucose to ethanol (alcohol). In other words, you could do it all in a test tube.

The cartoon shows sugar crossing a cell membrane (a bilayer of phospholipids). The 10 steps of the glycolytic pathway (red dots) convert glucose to pyruvate that can become lactic acid or cross the membrane (another lipid bilayer) of mitochondria. In these ‘cells within cells’ oxygen is consumed to make ATP from pyruvate. Glycolysis yields 2 ATPs from each glucose. In mitochondria ‘aerobic respiration’ produces 38 ATPs per glucose – which is why they have been called the “powerhouse of the cell”. In yeast, fermentation produces alcohol from pyruvate.

This was a stunning achievement because it showed for the first time that living systems weren’t inaccessible black boxes. You could take them to bits, find out what the bits were and reassemble them into something that worked – and that’s really a definition of the science of biochemistry. The upshot was that by the 1930s through the efforts of many gifted scientists, notably Otto Meyerhof and Gustav Embden, we had a step-by-step outline of the pathway now known as glycolysis.

Enter Otto Warburg

But by this point a chap called Otto Warburg had noticed that something odd happened to metabolism in cancer. He showed that tumour cells get most of their energy from glucose using the glycolytic pathway, despite the fact that it is much less efficient than aerobic respiration (2 to 38 ATPs per glucose). And they do this even when lots of oxygen is available. Which seems like molecular madness.

Warburg was part of an amazing scientific galaxy in the period from 1901 to 1940 when one out of every three Nobel Prize winners in medicine and the natural sciences was Austrian or German. Born in Freiburg, he completed a PhD in chemistry at Berlin and then qualified in medicine at the University of Heidelberg. Fighting with the Prussian Horse Guards in the First World War, he won an Iron Cross and followed that up with the 1931 Nobel Prize in Physiology or Medicine for showing that aerobic respiration, that is, oxygen consumption, involves proteins that contain iron. However, he made so many contributions to biochemistry that he was actually nominated three times for the prize.

His discovery about tumour cells led Warburg to suggest, reasonably but wrongly, that faulty mitochondria cause cancers – whereas we now know that it’s the other way around: metabolic perturbation is just one of the consequences of tumour development.

But if upsetting mitochondria gives tumours a helping hand, how about looking for factors that help to keep them normal – i.e. using oxidative phosphorylation. And the obvious place to look is in cells that don’t multiply – i.e. appear cancer-resistant.

Which is the idea that led Keckesova & Co to a ‘eureka’ moment. Searching in muscle cells from humans and mice they discovered a protein, LACTB, lurking in their mitochondria. When they artificially made LACTB in a variety of tumour cells both in vitro and in mice it inhibited their growth. In other words, LACTB appears to be a new ‘tumour suppressor’.

What does it do?

It turns out that LACTB works in a quite subtle way. It’s only found in mitochondria, not in the main body of the cell, and it plays a part in making the membrane that forms the boundary of the “powerhouse of the cell”. Membranes are made of two layers of phospholipids arranged with their fatty tails facing inwards. They work as regulatable barriers via proteins associated with the membrane that control the passage of small molecules – so, for example, pyruvate that we mentioned earlier uses specific proteins to cross the mitochondrial membrane.

But aside from their attached proteins, the lipids themselves are a complex lot: they have a variety of fatty acid tails and different chemical groups decorate the phosphate heads. This gemisch arises in part because the lipids themselves control the proteins that they surround. In other words, if the lipid make-up of a membrane changes so too will the efficiency of embedded transport proteins. LACTB controls the level of one type phospholipid (phosphatidylethanolamine, PE): when LACTB is knocked out more PE is made. Thus this tumour suppressor affects mitochondrial lipid metabolism and hence the make-up of the membrane, and its normal role helps in blocking tumour development.

Layers of lipids with their tails pointing inwards make up cell membranes (left): proteins (red & blue blobs) control what can cross the membrane. Phospholipids themselves are a complex mixture with a variety of head groups and fatty acid tails (right).

And the method behind the madness?

So in this newly-discovered tumour suppressor we have a way in which mitochondria can be subverted to promote tumours by changing the properties of their membrane. But what’s the point? Why might it be more profitable for cancer cells to get most of their energy via a high rate of glycolysis rather than by the much more efficient route of oxidising pyruvate in mitochondria – a switch often called The Warburg effect.

There seem to be two main reasons. One is that pathways branch off from glycolysis that provide components to make new DNA – greater flow though glycolysis makes those pathways more active too – a good thing if cells are going to reproduce. The second is that making abnormal amounts of lactic acid actually helps tumour cells to survive and proliferate, it stimulates the growth of new blood vessels to feed the tumour and it can make the immune response – the  defence normally mounted by the host against tumours – less effective.

By affecting mitochondrial function, mutations that knock out LACTB can give the Warburg effect a helping hand and – if the great man’s still following the literature – he may have noted with some glee that this finding, at least, is consistent with his idea that it all starts in mitochondria!


Keckesova, Z. et al. (2017). LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature doi:10.1038/nature21408