Transparently Obvious

 

Scientists have a well-earned reputation for doing odd things – by which I mean coming up with a ‘finding’ that leaves me, at least, wondering how, in the name of all things wonderful, they ever got money to do their study. To be fair, it’s the ‘social scientists’ – rather than the ‘real’ lot – that excel in this field. An example? Take your pick. They crop up pretty well weekly in the press. I liked the one on how something called ‘personal congruence’ affects marriage survival. The more congruence you and your partner have the better your chances: if, over time, your congruence goes down the tubes, your relationship will surely follow. But what on earth is congruence? Seemingly it’s a ‘state of agreeing.’ Lots of it equals harmony, loss of it = discord. So, it is what you remember from school geometry: it means more or less equal. Wow! Now I’ve grasped the upshot of this ‘study’: agreeably happy couples tend to make it: pairings based on whacking each other with frying pans tend to end in tears. Why didn’t they tell us earlier!!

Axolotl

   Axolotl

Fortunately, in my world, even the weirdies usually turn out to be quite sensible, once you know what’s going on. Many moons ago a girl-friend asked me if I’d like to see her collection of axolotls. Not having a clue what she was on about I gave it an excited ‘yes please’. Whilst it mayn’t have been what I was hoping for (I was very young back then), I immediately fell in love with these wonderful amphibians that I’d never heard of as she explained what I should have known: these ‘Mexican walking fish’ have very large embryos which makes them particularly useful for studying development. These sensational salamanders really are amazing, not least because they can regenerate entire limbs after they’ve been chopped off.

More recently there’s been another unlikely recruit to the scientific armoury: the zebrafish – a tropical freshwater fish from the Himalayas. This mighty minnow was the first vertebrate to be cloned which led to its being genetically modified to give a transparent variety. That’s all good fun but what on earth is the point of a see-through fish? Well, in Betrayed by Nature we pointed out that you can actually watch tumours growing in transparent zebrafish and we got so excited by that we even included a photo – kindly provided by Richard White of the Dana Farber Cancer Institute in Boston. The cancer was a melanoma which had grown into a black mass about 1 cm in diameter in the fish’s body after a small number of tumour cells had been injected a couple of weeks earlier.

And the driver is …

Nearly 15 years ago, just as the first complete sequence of human DNA was being unveiled, Mike Stratton and his colleagues at the Sanger Centre in Cambridge discovered a mutation that arises in about two-thirds of all malignant melanomas. It’s in a gene called BRAF. The protein made by the gene is an enzyme that’s part of a signalling pathway that pushes cells to divide. The mutation changes the shape of BRAF protein so it works 24/7 as an enzyme: the pathway is no longer controlled by a message from the world beyond the cell. It’s a ‘molecular switch’ that’s been flipped by mutation to act as a cancer ‘driver.’

Richard White and his colleagues showed that the same mutation drove melanoma development in zebrafish and that when it did so something remarkable happened. As the tumours got going they turned on a gene that is normally only required during the first 72 hours after fertilization. The gene’s called crestin – because it’s switched on in a tissue called the neural crest where crestin protein helps to form the bony support for the gills. After that it’s switched off and crestin protein never appears again. Except in the pigment-containing cells called melanocytes when they are turning into a tumour.

Seeing the problem

In a great example of how science can work, Charles Kaufman, Leonard Zon and colleagues in Boston and other centres took this finding and made another transgenic variant of the transparent zebrafish. They cut out the stretch of DNA that controls whether the crestin gene is ‘on’ or ‘off’ and hooked it up to a gene that makes a green fluorescent protein (GFP). Result: when the machinery of a cell turns crestin on, GFP is also made – and the cell glows green under the appropriate light. Hence you would expect to see a glowing neural crest early in development but thereafter a non-glowing fish. Unless it has a melanoma. And Zon & Co saw exactly that. Because green fluorescent protein glows so brightly, a single cell shows up and it turned out that whenever one green cell was detected it always went on to expand and grow into a large melanoma tumour.

1 cell to mel

Tracking a single cell turning into a tumour over 6, 9, 11.5 and 17 weeks. The green fluorescence marks an early developmental gene (crestin) being re-activated in a melanoma tumour (from Kaufman et al., 2016).

But why might it be useful to ‘see’ single cells?

Since the original finding by Stratton & Co more detailed studies have confirmed that mutated BRAF is indeed an important ‘driver’ in about two-thirds of malignant melanoma. But here’s the odd thing: lots of melanocytes (the cells that can turn into melanomas) have mutated BRAF – but they don’t become cancerous. Why not? And there’s something else: it’s well-known that ultraviolet radiation in sunlight causes many melanomas and they do indeed often arise on exposed skin – but they can also crop up in places where, as they say, the sun doesn’t shine. So clearly, important though mutated BRAF and sunlight are, there’s something else that’s critical for malignant melanoma.

The Kaufman experiment was remarkable, not least because it offers a way of getting at this key question of what happens in a cell to kick it off as a tumour, by comparison with a near neighbour that remains ‘normal.’

The tumour cells used in this model carry mutated BRAF and another gene, P53, was knocked out. This gives two major genetic drivers and it may be that further genetic changes aren’t needed. If that’s the case, then the decisive push must come either from epigenetic changes (that affect gene expression without change in DNA sequence) or from adaptations of the tumour microenvironment to provide an optimal niche for expansion. At the moment we don’t know very much about these critical areas of cancer biology. Being able to follow single cells may lead us to the answers.

Keep your eye on the transparent minnows!

Reference

Kaufman, C.K., Zon, L.I. et al. (2016). A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351, Issue 6272, pp. DOI: 10.1126/science.aad2197

 

Advertisements

Guess Who’s Coming to Dinner?

 

Question: when is a gene not a gene? Answer: when it’s a pseudogene.

Genes are familiar enough these days when the acronym DNA has become part of everyday speech “It is in Toyota’s DNA that mistakes made once will not be repeated”, as the CEO of Toyota rather sinisterly remarked. You could say that’s pseudo-scientific rubbish but, despite that kind of liberty-taking, most will know that a gene is a stretch of our genetic material (DNA) that carries the code to make a closely related RNA molecule that, in turn, may be used as a template to make a protein ­– it’s the molecular unit of heredity. Well known too is that the Greeks gave us ‘pseudo’ – but what’s a ‘lying’ or ‘false’ gene – and who cares?

No prizes for guessing that we should all be interested because it’s emerging that pseudogenes can be important players in cancer.

Player’s biography

Pseudogenes are somewhat disreputable because they are relatives of normal genes that along the evolutionary highway have become dysfunctional by losing the capacity to be ‘expressed’ – that is, their code can no longer be transformed into RNA and protein. You could think of them as an example of the shambolic way in which species have evolved by random happenstance so that they work in their own particular niches. And if you want the outstanding example of unintelligent design, look no further than yourself, as we did in Holiday Reading (2), Poking the Blancmange.

Just for background, although it doesn’t affect the main story, there are three ways in which our genome can acquire a pseudogene:

1. A normal gene becomes functionally extinct: odd mutational events disable the stretches of DNA that control its expression. The gene is like a siding on a railway that isn’t used for years and years until eventually the points  seize up (it would be a ‘switch’ on US railroads) and the cell machinery can no longer get at it – but when this does happen we get by without that gene.

2. During evolution genes quite often get duplicated – giving multiple copies: if one of these loses its regulatory bits the duplicate gene is switched off – it’s become a ghost.

3. We owe about 8% of our genome to viruses – mainly those with RNA genomes (retroviruses) whose life-cycle turns their RNA into DNA that has then been stuck into our genome. And that’s a lot (about 100,000 bits of retrovirus DNA) especially bearing in mind that only about 1% of our genome encodes proteins.

So our precious genome is littered with corpses and fragments thereof. In the past there’s been a regrettable tendency to label this material as ‘junk’ but increasingly we’re now discovering that there may be genetic life after death, so to speak. It’s not surprising if you think about it. If random events can inactivate a gene then they might do the reverse, even if that may be a much rarer event. And indeed it’s now clear that pseudogenes can be brought back to life through the random mutational events that characterise the rough and tumble of cellular life.

So not all pseudogenes are extinct then?

Correct. Obviously we wouldn’t be wittering on about them had not some bright sparks just shown that pseudogenes – or at least one in particular – can be re-awakened to play a part in cancer. The luminaries are Florian Karreth, Pier Paolo Pandolfi and friends from all over the place (USA, UK, Italy, Singapore) who found that a pseudogene called BRAFP1 (a relative of the normal BRAF gene) can help to drive cancer development. Some earlier studies had shown that BRAFP1 was expressed (i.e. RNA was made from DNA) in various human tumours but Karreth & Co extended this, detecting significant levels of the pseudogene RNA in lymphomas and thyroid tumours and also in cells from melanoma, prostate cancer and lung cancer, whilst it’s not switched on in the corresponding normal cells.

To show that this pseudogene can drive cancers they genetically engineered its over-expression in mice, whereupon the animals developed an aggressive malignancy akin to human lymphoma (specifically diffuse large B cell lymphoma). Short-circuiting an enormous amount of work, it emerged that the pseudogene up-regulated a signaling pathway involving its normal counterpart, BRAF, that drives proliferation.

106 pic

How a pseudogene (BRAFP1) might drive cancer. Top: The scheme illustrates the ‘central dogma’ of molecular biology: DNA makes RNA makes protein. In normal cells a family of micro RNAs (different coloured wiggles) regulate the level of BRAF RNA and hence of BRAF protein (above white line).  Bottom: When the pseudogene BRAFP1 is switched on its RNA competes for the negative regulators: the result is more BRAF RNA making more BRAF protein – making cancer (Karreth et al., 2015).

Interfering RNA

The pseudogene’s RNA manages to interfere with normal control by targeting another type of RNA – micro RNAs, so called because they’re very short (about 20 bases (units) long – so they’re encoded by tiny stretches of the over 3,000 million units that make up the genome). Small they may be but there are hundreds of them and it’s become clear over the last few years that they play critical roles in regulating how much protein is made from specific RNAs. Their method is simple: they recognize (i.e. bind to) stretches of RNA that encode proteins, thereby blocking translation into protein.

Karreth & Co showed that there are about 40 different micro RNAs that can stick to the RNAs encoding BRAF or BRAFP1. Normally when there’s no (or very little) BRAFP1 around they have only BRAF to act on – and their role is to control the proliferation signal it transmits – i.e. to keep that signal to what’s required for normal cell growth control. BUT, when the pseudogene RNA is made in significant amounts the attentions of the 40 micro RNAs are divided. Result: more BRAF RNA, more BRAF protein, higher cell proliferation.

It’s a bit like you’re just sitting down to a family dinner for four when there’s a knock on the door and in walks long lost Uncle Bert, complete with wife and two kids in tow. Of course you invite them to dine too – but now a meal for four has to stretch to eight. There is something for everybody – just not as much. Similarly for the regulators of BRAF: when BRAFP1 is present there’s half as much of the RNA regulators for each – and the result, bearing mind that they are negative regulators, is that the activity of BRAF goes up and the cells proliferate more avidly. The pseudogene is driving cancer.

First but not last

For decades pseudogenes were thought of as ‘junk’ DNA along with most of the rest of the genome that didn’t encode proteins – though I might say that was a concept I never promoted. Beware labeling anything in our genome as junk for it may rise, Kraken like, to remind us of our ignorance. And, now that one pseudogene has come in from the cold and been shown to drive some cancers, you can be confident that others will follow.

References

Karreth, F.A. et al. (2015). The BRAF Pseudogene Functions as a Competitive Endogenous RNA and Induces Lymphoma In Vivo. Cell 161, 319–332.

Holiday Reading (3) – Stopping the Juggernaut

The mutations that drive cancers fall into two major groups: those that reduce or eliminate the activity of affected proteins and those that have the opposite effect and render the protein abnormally active. It’s intuitively easy to see how the latter work: if a protein (or more than one) in a pathway that tells cells to proliferate becomes more efficient the process is accelerated. Less obvious is how losing an activity might have a similar effect but this comes about because the process by which one cell becomes two (called the cell cycle) is controlled by both positive and negative factors (accelerators and brakes if you will). This concept of a balancing act – signals pulling in opposite directions – is a common theme in biology. In the complex and ever changing environment of a cell the pressure to reproduce is balanced by cues that ask crucial questions. Are there sufficient nutrients available to support growth? Is the DNA undamaged, i.e. in a fit state to be replicated? If the answer to any of these questions is ‘no’ the cell cycle machinery applies the brakes, so that operations are suspended until circumstances change. The loss of negative regulators releases a critical restraint so that cells have a green light to divide even when they should not – a recipe for cancer.

Blanc sides.004

The cell cycle.

Cells are stimulated by growth factors to leave a quiescent state (G0) and enter the cell cycle – two growth phases (G1 & G2), S phase where DNA is duplicated and mitosis (M) in which the cells divide to give to identical daughter cells. Checkpoints can arrest progression if, for example, DNA is damaged. 

We’re all familiar with this kind of message tug-of-war at the level of the whole animal. We’ve eaten a cream cake and the schoolboy within is saying ‘go on, have another’ whilst the voice of wisdom is whispering ‘if you go on for long enough you’ll end up spherical.’

Because loss of key negative regulators occurs in almost all cancers it is a high priority to find ways of replacing inactivated or lost genes. Thus far, however, successful ‘gene therapy’ approaches have not been forthcoming with perhaps the exception of the emerging field of immunotherapy. The aim here is to boost the activity of the immune system of an individual – in other words to give an innate anti-cancer defense a helping hand. The immune system can affect solid cancers through what’s become known as the tumour microenvironment – the variety of cells and messengers that flock to the site of the abnormal growth. We’ve referred to these as ‘groupies’ and they include white blood cells. They’re drawn to the scene of the crime by chemical signals released by the tumour – the initial aim being to liquidate the intruder (i.e. tumour cells). However, if this fails, a two-way communication sees would-be killers converted to avid supporters that are essential for cancer development and spread.

Blanc sides.002

The tumour microenvironment. Tumour cells release chemical messengers that attract other types of cell, in particular those that mediate the immune response. If the cancer cells are not eliminated a two-way signaling system is established that helps tumour development.

There is much optimism that this will evolve into a really effective therapy but it is too early for unreserved confidence.

The obstacle of reversing mutations that eliminate the function of a gene has led to the current position in which practically all anti-cancer agents in use are inhibitors, that is, they block the activity of a protein (or proteins) resulting in the arrest of cell proliferation – which may ultimately lead to cell death. Almost all these drugs are not specific for tumour cells: they hit some component of the cell replication machinery and will block division in any cell they reach – which is why so many give rise to the side-effects notoriously associated with cancer chemotherapy. For example, the taxanes – widely used in this context – stick to protein cables to prevent them from pulling duplicated DNA strands apart so that cells, in effect, become frozen in final stages of division. Other classes of agent target different aspects of the cell cycle.

It is somewhat surprising that non-tumour specific agents work as well as they do but their obvious shortcomings have provided a major incentive for the development of ‘specific’ drugs – meaning ones that hit only tumour cells and leave normal tissue alone. Several of these have come into use over the past 15 years and more are in various stages of clinical trials. They’re specific because they knock out the activity of mutant proteins that are made only in tumour cells. Notable examples are Zelboraf® manufactured by Roche (hits the mutated form of a cell messenger – called BRAF – that drives a high proportion of malignant melanomas) and Gleevec® (Novartis AG: blocks a hybrid protein – BCR-ABL – that is usually formed in a type of leukemia).

These ‘targeted therapies’ are designed to not so much to poke the blancmange as to zap it by knocking out the activity of critical mutant proteins that are the product of cancer evolution. And they have produced spectacular remissions. However, in common with all other anti-cancer drugs, they suffer from the shortcoming that, almost inevitably, tumours develop resistance to their effects and the disease re-surfaces. The most remarkable and distressing aspect of drug resistance is that it commonly occurs on a timescale of months.

And being outwitted

Tumour cells use two tactics to neutralize anything thrown at them before it can neutralize them. One is to treat the agent as garbage and activate proteins in the cell membrane that pump it out. That’s pretty smart but what’s really staggering is the flexibility cells show in adapting their signal pathways to counter the effect of a drug blocking a specific target. Just about any feat of molecular gymnastics that you can imagine has been shown to occur, ranging from switching to other pathways in the signalling network to short-circuit the block, to evolving secondary mutations in the target mutant protein so that the drug can no longer stick to it. Launching specific drugs at cells may give them a mighty poke in a particularly tender spot, and indeed many cells may die as a result, but almost inevitably some survive. The blancmange shakes itself, comes up with a counter and gets down to business again. This quite extraordinary resilience of tumour cells derives from the infinite adaptability of the genome and we might do well to reflect that in trying to come up with anti-cancer drugs we are taking on an adversary that has overcome the challenges involved in generating the umpteen million species to have emerged during the earth’s lifetime.

Not the least disheartening aspect of this scenario is that when tumours recur after an initial drug treatment they are often more efficient at propagating themselves, i.e. more aggressive, than their precursors.

Mission Impossible?

We make great play in these pages of the wonders of the genetic revolution. So we should. The technology is simply breathtaking, and the amount of data we can gather is so incomprehensibly vast the latest generation of computers is straining at the seams to record it all and, of course, it unveils the vision of a new world. No field has felt the impact more than cancer biology which now holds the promise that, shortly after being found, tumors will be sequenced: on the basis of identified ‘driver’ mutations appropriate drug cocktails will be devised to prevent remission after the initial treatment and these can even be tested in mouse ‘avatars’ to confirm their effectiveness against the patient’s own tumor cells. Finally, even if recurrence sets in at a later date, the same procedure can be repeated and a new drug combo used to target any evolution undergone by the cancer. The era of ‘personalized medicine’ has arrived.

Every Silver Lining …

But there are a few murky clouds drifting across this sky blue portrait of triumph.

  1. The first is that, as we’ve seen in Family Tree of Breast Cancer and Molecular Mosaics, cancers are an incredible mixture – that is, the mutation signature varies depending on the region sampled in primary tumors and is different for individual metastases. This means that a ‘signature’ at best represents a dominant hand of mutations and, worse still, it’s continuously evolving.
  2. The second problem is that, although there are several hundred ‘anti-cancer’ drugs that have been approved for use by the FDA against specific types or stages of cancer, fewer than half a dozen are ‘specific’ – meaning that they hit only tumor cells and leave normal tissue alone. The ‘few’ work because they knock out the activity of mutant proteins that are made only in tumor cells. Notable examples are vemurafinib/Zelboraf (hits the mutated form of BRAF that drives a high proportion of malignant melanomas) and imatinib/Gleevec (blocks the BCR-ABL protein that is formed in most chronic myelogenous leukemias) – and these ‘targetted therapies’ have produced spectacular remissions. Other agents that have attracted much media attention include Herceptin (trastuzumab), a monoclonal antibody that sticks to a protein present in large amounts on the surface of some types of breast cancer cell. This type of agent is highly specific for the protein it targets (i.e. it doesn’t interact with anything else) but it isn’t specific for cancer cells per se. They work because cells heavily loaded with the target get a relatively big hit – a kind of tall poppy syndrome.
  3. Virtually all other chemo agents work on the same principle: in essence they affect every cell they manage to reach and any anti-cancer effect is due to tumor cells being a bit more susceptible. Which is why, of course, the efficacy of any drug combo is to a considerable extent a matter of luck and side effects are such a common problem.
  4. Unquestionably more anti-cancer drugs will be developed, those that do come on line will be more specific and therefore less unpleasant to use, so it may well be that in 20 years time we will have a drug cabinet that is sufficiently well stocked to tackle the major cancers at key stages in their evolution. Which is all well and good but, regardless of how they work and what is meant by ‘specificity’, the biggest problem of all will remain. Resistance – the capacity of tumor cells to neutralize anything that is used with the idea of neutralizing them. They do this by two main routes (1) pumping out the drug and (2) adapting to reduce drug efficacy. The obvious counter is simply to throw more of the drug at them but, in the end, side-effects impose a limit. What this means is that even when drugs have initially startling effects, as do vemurafinib and imatinib, patients eventually become refractive and tumors recur.

MAPK

Cell signalling: cells receive many signals from messengers that attach to receptor proteins spanning the outer membrane. Activated receptors turn on relays of proteins (RAS, A, B, C, D) that talk to the nucleus, switching on genes that drive proliferation. RAS proteins are a focus for many incoming signals and they also set off several relay chains that converge on the nucleus. They work at the cell membrane to which they are escorted from where they’re made by a protein called PDEdelta. A new drug, deltarasin, blocks the escort’s action so that RAS cannot find its way to work and cell growth is arrested.

A Different Line of Attack

In view of that rather gloomy assessment should we try an alternative approach? The personalized scenario involves drug combos tailored to the individual cancer at a given stage of development. But if that seems unlikely to provide a solution remotely near to the ideal, is there another way of selecting targets? Time to try ‘impersonalized medicine’ perhaps?

This notion comes from the thought that what we’re trying to do is block signals that release the brakes on cell proliferation. Many distinct signal pathways impact on the machinery that drives this process, themselves driven by different types of external signal, but it would seem obvious that somewhere along the line these must converge on one or two key regulators – master controllers if you like of cell multiplication. Indeed they do and one of these foci is a protein called RAS (there are three close relatives in the RAS family). RAS is a major junction in cell signalling: many messages from the outside world eventually converge on RAS and lots of pathways radiate from it. When a cell launches itself into the division cycle it does so as an integrated response to these signals.

RAS is mutated to a hyperactive form in about 20% of human cancers (turning on cell growth) so obviously it would be good to have a drug that can hit RAS and an enormous amount of effort has gone into coming up with one. Unfortunately a variety of clever strategies aimed directly at RAS proteins simply haven’t worked. Enter Gunther Zimmermann and his team.

Inhibiting RAS Signalling

RAS proteins do their signaling attached to the inside of the outer membrane of the cell – but they’re made in the interior and to get to their place of work they are escorted to the membrane by a protein called PDEδ (a phosphodiesterase). To upset this cosy arrangement, the Dortmund group developed small molecule, deltarasin, that sticks tightly to the escort which, in response, changes shape just enough to prevent it being able to hold hands  with RAS. The result is that the key signaller (KRAS in fact) is no longer distributed to the membrane. This prevents it working and impairs the growth of KRAS-mutant pancreatic tumour cells.

The great attraction of this approach is that it’s indirect – so the hope is that cells won’t realize that RAS is wandering aimlessly around doing nothing and therefore not simply overwhelm the drug by making more mutant RAS. It remains to be seen how many off-target effects this drug has but for the moment an exciting new idea holds the promise of hitting cancers where it hurts them most – in a key node essential for unregulated cell growth.

References

Baker, N.M. and Der, C.J. (2013). Cancer: Drug for an ‘undruggable’ protein. Nature 497, 577–578.

Zimmermann, G., Papke, B., Ismail, S., Vartak, N., Chandra, A., Hoffmann, M., Hahn, S.A., Triola, G., Wittinghofer, A., Bastiaens, P.I.H. and Waldmann, H. (2013). Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signaling. Nature 497, 638–642.