Boldly Going

When you come across a very successful, middle-aged scientist jumping up and down shouting “This is going to be just amazing” you can only conclude that either the pressures of the life scientific have finally got to him and he’s flipped or there is something really remarkable going on. Thus my feeling this week when I noted the behaviour of Greg Hannon who now works at the Cancer Research Institute in Cambridge.

Probing further, it emerged that Hannon, who is collaborating with Xiaowei Zhuang at Harvard University in the ‘other’ Cambridge, has just been awarded a five-year grant of £20 million by the London-based charity Cancer Research UK as part of its Grand Challenge initiative – more than enough to get your jumping genes going.

But it’s the aim of the project rather than its monetary size that is truly astonishing and has almost a feel of science fiction about it. The plan is nothing less than to come up with an interactive virtual-reality map of breast cancers. That is, to reconstruct every cell that makes up a tumour, showing the different types of cell and what they are up to at any given time – meaning that the model will display the expression level of thousands of genes in each cell and the different proteins being made. Staggering.

What’s the point?

The project is driven by the fact that we have gradually come to realize that tumours are a complex mixture of cells (what’s been called the tumour microenvironment) and the signals that these cells send out and receive determine the extent of tumour growth and whether it can spread to other sites in the body (i.e. metastasize).

Where have we got to?

One approach to mapping what’s going on was laid out a couple of years ago by the converging studies of Rahul Satija and colleagues of the Broad Institute of MIT and Harvard and Kaia Achim et al. from labs in Heidelberg, Cambridge and Oxford using zebrafish embryos and worm brains, respectively.

The method has two parts:

  1. The tissue is dissociated into single cells and the power of sequencing is applied to obtain RNA sequences from each cell (revealing which genes are ‘switched on’ in that cell).
  2. The second step visualizes specific RNAs using tagged probes (fluorescently labeled RNAs that enter cells and bind to target RNAs molecules).

In essence a reference map is made by overlaying the intact tissue with a grid and matching a cell to a grid area by comparing expression of a number of ‘landmark’ genes with the fluorescence marker signal.

To do all this they devised a computational package that, using fewer than 100 landmark genes, maps hundreds of sequenced cells to their location in the tissue. In that arty way that scientists have, they named their package after Georges-Pierre Seurat, the French chappie who came up with the idea of painting in small dots of colour (though his weren’t fluorescent).

Cellular pointillism has just taken another step forward with Keren Bahar Halpern, Ido Amit and Shalev Itzkovitz at the Weizmann Institute of Science, Rehovot, Israel producing a cell-by-cell map of mouse liver, complete with RNA sequences from each cell. To be precise they mapped the hexagon-shaped units called lobules that are repeated to make up mammalian liver.

The shapes of things to come

So the next step for Hannon and his colleagues is an interactive map of a human tumour and, if you can’t wait, CLICK HERE to see their mock-up to give you some idea of what’s in store. In this synthetic video tumour cells are green, macrophages are blue and blood vessels are red.


So it’s warp factor 9 for Captain Hannon and his crew. It may be that the 3D images of tumours will look a bit the virtual graphics that the astrophysicists fob off on us whilst pretending they have some idea what a star’s doing umpti-zillion light years away. But in fact, rather than boldly going where no man has gone before“, this cellular journey is better summed up by Marcel Proust The real voyage of discovery consists not in seeking new landscapes, but in having new eyes” – the new eyes being the stunning combination of methods that permits 3D interrogation of individual cells.

Will this phase of the Grand Challenge produce overwhelming amounts of data? Undoubtedly. But, if we are to understand how living things work we have to front up to the complexity of nature. We then have to hope we are smart enough to resolve the crucial from the detail.


Satija, R. et al. (2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33, 495–502.

Achim, K. et al. (2015). High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nature Biotechnology 33, 503–509.

Halpern, K. B. et al. (2017). Nature 542, 352–356.

In the beginning … 

You may have noticed that the American actress Angelina Jolie, who is now employed as a  Special Envoy  for the  United Nations High Commissioner for Refugees, has re-surfaced in the pages of the science media. She first hit the nerdy headlines by announcing in The New York Times that she had had a preventive double mastectomy (in 2013) and a preventive oophorectomy (in 2015).

We described the molecular biology that prompted her actions in A Taxing Inheritance. The essential facts were that she had a family history of breast and ovarian cancer: genetic testing revealed that she carried a mutation in the BRCA1 gene giving her a 87% risk of breast cancer and a 50% chance of getting ovarian cancer.

A star returns

BRCA1 and breast cancer are back in the news as a result of a paper by Jane Visvader, Geoffrey Lindeman and colleagues in Melbourne that asked a very simple question: which type of cell is driven to proliferate abnormally and give rise to a tumour by mutant BRCA1 protein? That is, pre-cancerous breast tissue contains a mixture of cell types: does cancer develop from one in particular –  and, if you blocked proliferation of that type of cell, could you prevent tumours forming?

Simple question but their paper summarises about 10 years of work to come up with a clear answer.

And the villain is …

The mature mammary gland is made up of lots of small sacs (alveoli) lined with cells that produce milk – called luminal cells. Groups of alveoli are known as lobules, linked by ducts that carry milk to the nipple. Most breast cancers start in the lobular or duct cells.

Breast fig copy

Left: Normal breast lobule showing alveoli lined with milk-producing luminal cells connected to duct leading to the nipple. Right: Normal milk sac, non-invasive cancer, invasive cancer.

Things are complicated by there being more than one type of progenitor cell but the Melbourne group were able to show that, in mice carrying mutated BRCA1, one subtype stood out in terms of its cancerous potential. These cells carried a protein on their surface called RANK (which is member of the tumour necrosis factor family). They had gross defects in their DNA repair systems (so they can’t fix genetic damage) and they’re highly proliferative. Luminal progenitors that don’t express RANK behave normally.

Slide1 copy

Scheme representing normal and abnormal cell development. The basic idea is that different types of cells evolve from a common ancestor. The Australian work identified one type of luminal progenitor cell that carries a protein called RANK on its surface (pink cell) as being a prime source of tumours. RANK+ cells have defective DNA repair systems so they accumulate mutations (red cells) more rapidly than normal cells, a feature of tumour cells.

In mice with mutant BRCA1 a monoclonal antibody (denosumab) that blocks RANK signalling markedly slowed tumour development. In a small pilot study blockade of RANK inhibited cell proliferation in breast tissue from human BRCA1-mutation carriers.


How effective blocking the activation of RANK signalling will be in preventing breast cancer is anyone’s guess but the idea behind the work of the Australian group cannot be faulted. Being able to prevent the ‘starter’ cells from launching themselves on the pathway to cancer driven by mutation in BRCA1 would mean that women in Angelina Jolie’s position would not have to contemplate the drastic course of surgery. The question is: will the preliminary mouse results lead to something that works in humans and, moreover, does so with high efficiency. As ever in cancer, watch this space – but don’t hold your breath!


Nolan, E. et al. (2016). RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.


Where’s that Tumour?

It’s handy that in the last piece we summarised the Grand Plan of President Obama’s Moonshot and the UK’s complementary Grand Challenges for cancer because it’s a good backdrop to some results presented a month ago at the European Breast Cancer Conference in Amsterdam. As ever, the newspapers reported them under ‘staggering’ headlines – but this time you couldn’t really blame them as one of the boffins involved, Nigel Bundred of Manchester University, described the results as mind-boggling.’

Prepare to be boggled

What was reported was a small-scale trial (257 women) of a treatment for one of the most aggressive forms of breast cancer – HER2 positive. This subtype of breast cancer takes its name from a protein that spans the cell membrane and can pass a signal from outside to in. That makes HER2 a ‘receptor’ – you can think of receptors as two blobs of protein joined by a wiggly bit that sits across the cell membrane. When something sticks to the outer bit the receptor changes shape to accommodate it. It’s rather like shaking hands with someone: the shape of your hand changes as you grip theirs. The clever bit is that a relatively small change in the blob on the outside of the cell is transmitted to the blob on the inside via the trans-membrane bridge (or wiggly bit).

HER2 is unusual: rather than having its own messenger floating around in the circulation, it gets switched on by sticking to another cell surface receptor – such receptors are rather touchingly called ‘orphans’. HER2 is a bit of an incestuous orphan, being particularly fond of HER3, a close relative – and when these two are drawn into an embrace on the outside of the cell their internal blobs have to follow suit – it’s difficult to kiss while keeping your bottom halves far apart. This drawing together of the internal blobs in turn causes them to change shape – not a lot but just enough to act as a signal. For HER2 that signal is an enzyme activity: it gets turned on as a kinase – so it adds phosphate groups, specifically to tyrosine amino acids, in target proteins. It’s a receptor tyrosine kinase. Switching it on activates downstream pathways that signal to the nucleus, telling the cell to go forth and multiply.

Because there are lots of signal pathways in cells that send messages in straight lines but can also ‘cross-talk’, it’s a bit like a blancmange: poke it in one place with a chemical (messenger or drug) and the whole thing wobbles.

Fig. 1. 114

The cell as a blancmange. Receptor proteins span the outer membrane and most pass a signal from outside to in as a response to the arrival of a chemical messenger. HER2 is unusual because it works by linking with other receptors (e.g. HER3): the intracellular pathways thus activated include RAS-MAPK.

Healthy breast cells have about 20,000 HER2 proteins but tumour cells may have 100 times more – i.e. 2 million receptors. So it’s easy to see that if you jack up the number of signallers by 100-fold you’re likely to have a pretty hefty proliferation push. The cells just keep on making more and more of themselves in an uncontrolled way – that’s cancer.

One of the main downstream signalling pathways from HER2 is RAS-MAPK that we’ve met before as a seductive target for blocking by anti-cancer drugs.

But, because multiple pathways can be switched on, hitting a single target often doesn’t work too well.

What’s new?

The usual treatment for breast cancer is primary tumour removal by surgery followed by a combination of radiotherapy and drugs. One of the most successful drugs for treating cancers with high levels of HER2 has been trastuzumab (brandname Herceptin). Herceptin is an antibody that sticks to HER2, prevents the receptor interacting with other proteins (including HER3) and thus blocks uncontrolled signalling.

The study that’s just been reported had two novel twists. The first was to try Herceptin before surgery. The second was to combine Herceptin with another drug – one that hits the enzyme activity that turns on the signal pathways inside cells.

A big turn-off: kinase inhibitors

Lapatinib (Tykerb/Tyverb) is a small molecule that inhibits the tyrosine kinase activity of HER2. It’s been used hitherto where a cancer has progressed after treatment with other drugs. About a dozen kinase inhibitors currently have Food and Drug Administration approval with many more in clinical trials. Perhaps the best known is imatinib (Gleevec), used for the treatment of chronic myelogenous leukemia.

Combining Tykerb with Herceptin hits the signal pathway two different spots. The idea is to give the tumour cell two problems to overcome in the hope that it will fail. It’s a strategy that has met with some success in other settings – meaning that some patients have had extended survival times.

In this study 66 women were given the combination therapy and the results clearly came as a serious shock to one and all. In almost nine out of ten cases there was an immediate response but in 11% tumours entirely vanished over a two-week treatment period. That is truly astonishing. Even in the most successful mouse experiments it is a very rare event for tumours to disappear. In a further 17% of the women tumours shrunk to less than 5mm – a growth so small it is classed as “minimal residual disease”.

Fig. 2. 114

Poking the blancmange. Two shots at blocking signalling in a cancer cell with high levels of the HER2 receptor. Herceptin prevents HER2 interacting with other proteins, especially HER3, whilst Tykerb blocks any residual tyrosine kinase activity.

 A big question, of course, is why complete responses only occurred in one in ten cases – and it underlines the need to know more about what makes a tumour, as we noted last time. That aside, one very encouraging aspect is the short treatment period required for a response. Tyverb was turned down by NHS rationing bodies for not being cost-effective at £27,000 a year – much the same as Herceptin. However, the combined therapy would be about £1,500 per patient. Assuming that the complete responders really are in long-term remission, that would represent a financial transformation almost as astonishing as the biological result.

New Era … Or Déjà vu?


Readers who follow events in the US of A – beyond the bizarre unfolding of the selection of the Republican Party’s nominee for President of the United States – may have noticed that the presidential incumbent put forward another of his bright ideas in the 2016 State of the Union Address. The plan launched by President Obama is to eliminate cancer and to this end $1 billion is to go into a national initiative with a strong focus on earlier detection, immunotherapy and drug combinations. It’s called a Moonshot’, presumably as a nod to President Kennedy’s 1961 statement that America should land a man on the moon (and bring him back!).011316_SOTU_THUMB_LARGE

A key aim of Moonshot is to improve all-round collaboration and to ‘bring about a decade’s worth of advances in five years.’ Part of this involvesbreaking down silos’ – which apparently is business-speak (and therefore a new one on me) for dealing with the problem of folk not wanting to share things with others in the same line of work. So someone’s spotted that science and medicine are not immune to this frailty.silo_mentality

On the home front …

In fact the President could be said to be slightly off the pace as, in October 2015, Cancer Research UK launched ‘Grand Challenges’ – a more modest (£100M) drive to tackle the most important questions in cancer. They’ve pinpointed seven problems and, helpfully, six of these will not be new to dedicated readers of these pages. They are:

  1. To develop vaccines (i.e. immunotherapy) to prevent non-viral cancers;
  2. To eradicate the 200,000 cancers caused each year by the Epstein Barr Virus;
  3. To understand the mutation patterns caused by different cancer-causing events;
  4. To improve early detection;
  5. To map the complexity of tumours at the molecular and cellular level;
  6. To find a way of targetting the cancer super-controller MYC;
  7. To work out how to target anti-cancer drugs to specific cells in the body.

{No/. 2 is the odd one out so it clearly hasn’t been too high a priority for me but we did talk about Epstein Barr Virus in Betrayed by Nature – phew!}.

But wait a minute

Readers of a certain age may be thinking this all sounds a bit familiar and, of course, they’re right. It was in 1971 that President Richard Nixon launched the ‘war on cancer’, the aim of which was to, er, to eliminate cancers. Given that 45 years on in the USA there’ll be more than 1.6 million new cases of cancer and 600,000 cancer deaths this year, it’s tempting to conclude that all we’ve learned is that things are a lot more complicated than we ever imagined.

Well, you can say that again. Of the several hundred genes that we now know can play a role in cancers, two are massively important MYC (‘mick’) and P53. Screen the scientific literature for research publications with one of those names in the title and you get, wait for it, over 50,000 for ‘MYC’ and for P53 over 168,000. It’s impossible to grasp how many hours of global sweat and toil went into churning out that amount of work – and that’s studies of just two bits of the jigsaw!

So 45 years of digging have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and cancer rates remain below 5% 1%, respectively. For these and other cancers there has been very little progress.

So 45 years of digging away have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and pancreatic cancer rates remain below 5% and 1%, respectively. For these and other cancers there has been very little progress.

All systems go?

Well, maybe. Moonshot is aimed at better and earlier diagnosis, more precise surgery and radiotherapy, and more drugs that can be better targeted. Oh, and bearing in mind that one in three cancers could be prevented, keeping plugging away at lifestyle factors.

How will it fare? Well, now we’re in the genomic era we can be sure that the facts mountain resulting from 45 years of collective toil will be as a molehill to the Everest of data now being mined and analysed. From that will emerge, we can assume with some confidence, a gradual refinement of the factors that are critical in determining the most effective treatment for an individual cancer.

Just recently we described in The Shape of Things to Come the astonishingly detailed picture that can be drawn of an individual tumour when it’s subjected to the full technological barrage now available. As we learn more about the critical factors, immunotherapy regimens will become more precise and the current response rate of about 10% of patients will rise.

Progress will still be slow, as we noted in The Shape of Things to Come – don’t expect miracles but, with lots of money, things will get better.

Lethal ZIP codes

In Keeping Cancer Catatonic we retailed how, over 125 years ago, the London physician Stephen Paget came up with his ‘seed and soil’ idea to explain why it was that when cancers spread to distant sites around the body by getting into the circulation they didn’t simply stick to the first tissue they came across. Paget had spotted that cancers tend to have preferred sites for spreading: tumours of the eye tend to travel to the liver, rather than the much handier brain, and breast cancers, Paget’s speciality, commonly spread to the liver but also to the lungs, kidneys, spleen and bone. So his idea was that certain distant secondary sites are somehow made more receptive to tumor growth, just as soil can be prepared for seeds to sprout.

So the key question became ‘how?’ and it’s hung in the cancer air for well over a century during which we’ve made very little progress towards an answer – and it is crucial because the business of tumour cells spreading (metastasizing) causes most cancer deaths (over 90%).

But, at long last, things have started to move, largely due to the efforts of David Lyden and his colleagues at Weill Cornell Medical College. Their first astonishing contribution was to show that cells in primary tumours release messengers into the circulation and these, in effect, tag what will become landing points for wandering tumour cells – i.e., the target sites are determined before any tumour cells actually set foot outside the confines of the primary tumour.

After that seismic revelation the story advanced a step further (in Scattering the Bad Seed) with some molecular detail of how the sites are marked – an effect Lyden has christened ‘Bookmarking cancer’ – and how when tumour cells do settle in their new niche they may be kept dormant for many years before starting to expand.

Carrying the flag

The next chapter in the story, as retailed in Holiday Reading (4) – Can We Make Resistance Futile?, revealed that the message is carried by small sacs – like little cells – called exosomes that are released from tumour cells. These float around the circulation until they find their target site, whereupon they plant the flag by setting off a chain reaction that produces a sticky protein – fibronectin – a kind of glue for immune cells and tumour cells.

That is all truly amazing stuff but, as we noted in Holiday Reading (4) – Can We Make Resistance Futile?, a recurring theme in science is that one answer merely poses the next question – in this case ‘what’s the messenger?’

As in all the best thrillers, the authors have kept us in suspense to the last, helped presumably by their not knowing the answer. But in this week’s Nature (Oct. 28, 2015) comes the denoument to this whodunit.

Mister postman look and see …

Many moons ago an outfit called the Marvelettes had a No. 1 hit with Please Mr. Postman and somewhat later the Fab Four did a re-hash that met with equal success. Perhaps we should have asked them how nature would go about directing little packages around the body. John, Ringo and the lads would, with their earthy, Liverpudlian logic, have pointed out the triviality of the problem of exosome addressing. ‘It’s not like you’re sending stuff all over the world, is it? You’ve only got a few targets – the major organs of the body. So a dead simple code will do. You know your messengers are proteins – ’coz they do everything – OK? So, pick a protein that comes in two bits with a few variants of each: mix and match and there’s yer postcodes. Now … what was that ditty about yellow subsurface vessels …’

And so it came to pass …

And the messenger is …

A family of proteins called integrins whose job is to span the membranes of cells, thereby promoting cell-cell interactions. They are indeed made of two different chains stuck together (called α (alpha) and β (beta)) and the upshot is that our cells can make about 24 unique integrins – more than enough to form a coded address system to direct tumour cells around the body. Well done lads!

What Ayuko Hoshino, David Lyden and their many collaborators did was to tag exosomes released from various types of cancer cell with a fluorescent dye and inject them into mice. The fluorescent label enabled them to track the exosomes and it turned out that, for a variety of cancer cells (breast, pancreatic, colorectal, lung, melanoma and pediatric) the exosomes travelled to the organs associated with metastasis (e.g., breast cancer exosomes stuck in the lungs, pancreatic cancer exosomes in the liver, etc). In other words exosome spread mimicked the pattern of the tumour from which they were derived. Once they had landed the exosomes set about reprogramming the organ sites to make a fertile microenvironment capable of supporting tumor cell growth in a new colony.

When they looked at the exosome proteins they found a particular member of the integrin family flagged each organ-specific site. Thus α6β4 promotes lung metastasis, αvβ5 homes in on the liver, αvβ3 on the brain, etc.

MapFinding a home

To spread around the body (metastasise) primary tumours first release small sacs (exosomes) carrying protein tags (integrins). Moving through the circulatory system the integrin tags home in to specific addresses found on different organs. The effect of exosomes sticking to target sites is to prepare the ground for cells released by the tumour to adhere and colonise.

Down the tube

You could think of primary tumours as being a bit like us when we move to a new city and try to find a des. res. in a place you don’t know. We could just ramble round the subway system until something catches our eye but that might take for ever. Much more efficient is to ask someone with local knowledge where would be good spots to target. For disseminating tumours their exosomes are the scouts who do the foot-slogging: the protein signatures on the surface of these small, tumour-secreted packages home in on postcodes that define a desirable locale for metastatic spread.

Shooting the messenger

An obvious question is ‘If exosomes are critical in defining metastatic sites, can you block their action – and what happens when you do?’ In preliminary experiments Hoshino & Co showed that either knockdown of specific integrins or blocking the capacity of these proteins to stick to their targets (with a specific antibody or short synthetic peptides) significantly reduced exosome adhesion, thereby blocking pre-metastatic niche formation and liver metastasis.

A new beginning?

We described these fabulous results as the denouement but, of course, it isn’t. As Mr. Churchill remarked in a somewhat different context: ‘Now this is not the end.’ It is rather a step to answering an old question but it’s incredibly exciting. If screening for exosomes leads to the detection of cancer not just years but perhaps decades earlier than can be achieved by present methods and if blocking their action can keep metastasis at bay, then the field of cancer will be utterly transformed.


Hoshino, A. et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature doi:10.1038/nature15756.

Ruoslahti, E. (1996). RGD and Other Recognition Sequences for Integrins. Annual Review of Cell and Developmental Biology 12, 697-715.

Wonder of the World

Welcome back from our holidays on which, we trust, you had as much fun reading the four refresher pieces as I had writing them. Utter nonsense, of course. I’ve never found writing to be an orgasmic activity but, as they say about cod liver oil, it is good for you. However, whilst we were all improving ourselves on our deck-chairs and sun-loungers, the Tide of Science was waiting for no man: the waves of cancer biology have obliterated our sand castles and are fast approaching our toes. So let’s get on – albeit doing our best to make the segue from vacation to vocation as seamless as possible …..

So, on the subject of holidays, newspapers and magazines rather like the theme of ‘places to visit before you die’ – which is OK in that the world is wonderful and we should appreciate it. But there’s a problem in that one of the modern wonders is being able to see magnificent photos and movies of every far-flung nook, cranny and creature without leaving our sofa. So when we finally do get off our rear ends and chug past the Statue of Liberty on the Staten Island Ferry, zoom into Sydney or rock up to the Taj Mahal, the reaction is likely to be ‘That’s nice: looks just like on tv. Where next?’

Fortunately, being blasé has its limits. The only time I’ve made it to the Grand Canyon the mid-winter sun highlighted the colours of the rock striations so they were breathtaking in a way no photograph could quite capture. In the same vein, everyone should take the Trans-Siberian Railway we’re often told. And so you should but not because you will see houses and churches, rivers and trees that you can’t find on the Internet but because only borne by the train do you begin to sense the immensity of Mother Russia. The fact that the scenery is almost entirely birch trees minimizes distraction: all you can do is contemplate vastness – and the harshness that brings – an unvarying obbligato to Russian life.

A Provodnitsa looking after one of her passengers on The Trans-Siberian Railway

A Provodnitsa looking after one of her passengers on The Trans-Siberian Railway

The thrice-weekly freight at Grand Canyon Station, circa 1970

The thrice-weekly freight at Grand Canyon Station, circa 1970







Not Forgetting

All of which brings us to something else that is also truly a wonder of the world – cancer. If it seems a trifle weird to describe thus what’s usually classed as one of man’s greatest blights, consider this. The drive to control cancer has generated research on a scale unmatched in any other field of science. One upshot, not necessarily at the top of the list, is that we now have a breathtakingly detailed picture of the astonishing adaptability of life  – that is of our genetic material, DNA, and how its calisthenics can promote the most incredible behaviour on the part of individual cells. It’s true, you might point out, that we can see this by simply looking at the living world around us. The power of DNA to carry, in effect, limitless information produces the infinite cellular variety underpinning the staggering range of life that has evolved on earth. {Did you spot just the other day that a school field trip discovered 13 new species of spider in Queensland – yes, thirteen – inevitably headlined by The Sun as Creepy Hauly}

In the new world

But in focusing on cancers – what happens at the molecular level as they develop and how they evade our attempts to control them – the fine detail of this nigh-on incomprehensible power has been revealed as in no other way.

You’ll know what’s coming: the biggest single boost to this unveiling has been the arrival in the twenty-first century of methods for sequencing DNA and identifying which genes are expressed in cells at any given time. I know: in umpteen blogs I’ve gone on about its awe-inspiring power – but it is stunning and we’re at that stage when new developments leave one gasping almost on a monthly basis. The point here is that it’s not that the science keeps getting turned on its head. Far from it: the message remains that cells pick up changes to their DNA and, with time, these cumulative effects may drive them to make more of themselves than they should.

That’s cancer. But what is fantastic is the molecular detail that the ’omics revolution continues to lay bare. And that’s important because, as we have come to recognize that every cancer is unique, ideally we need to provide specifically tailored treatments, and we can only think of doing that when we know all the facts – even if taking them in demands a good deal of lying down in darkened rooms!

You could think of the fine molecular detail of cancers as corresponding to musical ornaments – flourishes that don’t change the overall tune but without which the piece would be unrecognizable. These include trills and turns – and all musicians will know their appoggiaturas from their acciaccaturas. They’re tiny embellishments – but just try removing them from almost any piece of music.

Lapping at your toes

So let’s look at three recent papers that have used these fabulous methods to unveil as never before the life history of cancers. The first is another masterful offering from The Sanger Institute on breast cancer: an in-depth analysis of 12 patients in which each tumor was sampled from 8 different locations. In the main the mutation patterns differed between regions of the same tumour. They extended this by looking at samples from four patients with multi-focal disease (‘foci’ being small clumps of tumour cells). As expected, individual foci turned out to be clearly genetically related to their neighbours but they also had many ‘private mutations’ – a term usually meaning a mutation found only in a single family or a small population. Here the ‘family’ are individual foci that must have arisen from a common ancestor, and you could think of them as a cellular diaspora – a localised spreading – which makes them a kind of metastasis. Quite often the mutations acquired in these focal sub-clones included major ‘driver’ genes (e.g., P53, PIK3CA and BRCA2). In general such potent mutations tend to be early events but in these foci they’ve appeared relatively late in tumour development. This doesn’t upend our basic picture: it’s just another example of ‘anything goes’ in cancer – but it does make the point that identifying therapeutic targets requires high-depth sequencing to track how individual cancers have evolved through continual acquisition of new mutations and the expansion of individual clones.

The authors used ‘coxcomb’ plots to portray these goings-on but they are quite tricky to make head or tail of. So, to avoid detail overload, I’ve converted some into genetic wallpaper, the non-repeating patterns illustrating the breathtaking variety that has evolved.

Wallpaper jpegDecorative DNA. The discs are ‘coxcomb’ plots – a variant of a pie chart. Here the colours and the wedge sizes represent mutations in different regions of four primary breast tumours. Every disc is different so that the message from this genetic wallpaper is of mutational variation not only between cancers but across the different samples taken from a single tumour. I trust that Lucy Yates, Peter Campbell and their colleagues will not be too upset at my turning their work into art (and greatly abbreviating the story): you can read the original in all its wondrous glory in Nature Medicine 21, 751–759.

The first person to come up with this very graphic way of conveying information was Florence Nightingale who, whilst working in Turkey during the Crimean War, realized that soldiers were dying in the hospitals not only from their wounds but, in much greater numbers, from preventable causes including infections, malnutrition and poor sanitation. Her meticulous recording and original presentation of hospital death tolls made her a pioneer in applied statistics and established the importance of sanitation in hospitals.

Something for the gentlemen

Two equally powerful onslaughts from Gunes Gundem, Peter Campbell and their colleagues at The Sanger Institute (again!) and Dan Robinson and pals from the University of Michigan Medical School have revealed the corresponding molecular detail of prostate cancer. Here too the picture is of each region of a tumour being unique in DNA terms. Moreover, they showed that metastasis-to-metastasis spread was common, either through the seeding of single clones or by the transfer of multiple tumour clones between metastatic sites.

Even that miserable old sod Lenin might have brightened at such fabulous science, before reverting to Eeyore mode with the inevitable “What’s to be done?” But it’s a good question. For example, as a general strategy should we try to kill the bulk of the tumour cells or aim for clones that, although small, carry very potent mutations.

Aside from the basic science, there is one quite bright ray of sunshine: about 90% of the mutations linked with the spread of prostate cancer are potentially treatable with existing drugs. And that really is encouraging, given that the disease kills 11,000 in the UK and over 30,000 in the USA every year.

prostate dogWe might also be heartened by the skills of German Shepherd dogs that can, apparently, be persuaded to apply one of their favourite pastimes – sniffing – to the detection of prostate cancer. Point them at a urine sample and 90% of the time they come up with the right answer. Given the well-known unreliability of the prostate-specific antigen blood test for prostate cancer, it’s nice to think that man’s best friend is on the job.


Yates, L.R., et al. (2015). Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nature Medicine 21, 751–759.

Robinson, D., et al. (2015). Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 161, 1215–1228.

Gundem, G., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. ICGC Prostate UK Group (2015). Nature 520, 353–357.

Holiday Reading (4) – Can We Make Resistance Futile?

For those with a fondness for happy endings we should note that, despite the shortcomings of available drugs, the prospects for patients with a range of cancers have increased significantly over the latter part of the twentieth century. The overall 5-year survival rate for white Americans diagnosed between 1996 and 2004 with breast cancer was 91%; for prostate cancer and non-Hodgkin’s lymphoma the figures were 99% and 66%, respectively. These figures are part of a long-term trend of increasingly effective cancer treatment and there is no doubt that the advances in chemotherapy summarised in the earlier Holiday Readings are contributory factor. Nonetheless, the precise contribution of drug treatments remains controversial and impossible to disentangle quantitatively from other significant factors, notably earlier detection and improved surgical and radiotherapeutic methods.

Peering into the future there is no question that the gradual introduction of new anti-cancer drugs will continue and that those coming into use will be more specific and therefore less unpleasant to use. By developing combinations of drugs that can simultaneously poke the blancmange at several points it may be possible to confront tumor cells with a multiple challenge that even their nimbleness can’t evade, thereby eliminating the problem of drug resistance. Perhaps, therefore, in 20 years time we will have a drug cabinet sufficiently well stocked with cocktails that the major cancers can be tackled at key stages in their evolution, as defined by their genetic signature.

However, on the cautionary side we should note that in the limited number of studies thus far the effect of drug combinations on remission times has not been startling, being measured in months rather than years or decades. Having noted the durability of cancer cells we should not be surprised by this and the concern, of course, is that, however ingenious our efforts to develop drug cocktails, we may always come second to the adaptability of nature.

Equally perturbing is the fact that over 90% of cancer deaths arise from primary tumors spreading to other sites around the body. For this phenomenon, called metastasis, there are currently very few treatment options available and the magnitude of this problem is reflected in the fact that for metastatic breast cancer there has been little change in the survival rates over the past forty years.

Metastasis therefore remains one of the key cancer challenges. It’s over 125 years since the London physician Stepen Paget asked the critical question: ‘What is it that allows tumour cells to spread around the body?’ and it’s a daunting fact that only very recently have we made much progress towards an answer – and thus perhaps a way of controlling it. To the fore in this pursuit has been David Lyden and his colleagues at Weill Cornell Medical College in New York. Their most astonishing finding is that cells in the primary tumour release messengers into the circulation and these, in effect, tag what will become landing points for wandering cells. Astonishing because it means that these sites are determined before any tumour cells actually set foot outside the confines of the primary tumour. Lyden has christened this ‘bookmarking’ cancer. That is a quite remarkable finding – but, as ever in science, it merely shifts the question to ‘OK but what’s the messenger?’

A ray of sunshine

It might appear somewhat churlish, especially after all that funding, to end on a note of defeatist gloom so let’s finish with my ray of sunshine that represents a radical approach to the problem. It relies on the fact that small numbers of cells break away from tumors and pass into the circulation. In addition, tumours can release both DNA and small sacs – like little cells – that contain DNA, proteins and RNAs (nucleic acids closely related to DNA). These small, secreted vesicles are called exosomes – a special form of messengers, communicating with other cells by fusing to them. By transferring molecules between cells, exosomes may play a role in mediating the immune response and they are now recognized as key regulators of tumour growth and metastasis.

Step forward Lyden and friends once more who have just shown in a mouse model of pancreatic cancer that exosomes found their way to the liver during the tumour’s earliest stages. Exosomes are taken up by some of the liver cells and this sets off a chain of cell-to-cell signals that eventually cause the accumulation of a kind of molecular glue (fibronectin). This is the critical ingredient in a microenvironment that attracts tumour cells and promotes their growth as a metastasis (secondary growth). So you can think of exosomes as a kind of environmental educator.

Exosome Fig

Exosomes released from primary tumours can mark a niche for metastasis.

The small sacs of goodies called exosomes are carried to the liver where they fuse with some cells, setting off a chain reaction that produces a sticky protein – fibronectin – a kind of glue for immune cells and tumour cells. (from Costa-Silva, B., Lyden, D. et al., Nature Cell Biology 17, 816–826, 2015).

The recent, remarkable technical advances that permit the isolation of exosomes also make it possible to fish out circulating tumour cells and tumour DNA from a mere teaspoonful of blood.

Circulating tumour cells have already been used to monitor patient responses to chemotherapy – when a treatment works the numbers drop: a gradual rise is the earliest indicator of the treatment failing. Even more exciting, this approach offers the possibility of detecting the presence of cancers years, perhaps decades, earlier than can presently be achieved. Coupling this to the capacity to sequence the DNA of the isolated cells to yield a genetic signature of the individual tumor can provide the basis for drug treatment. There are still considerable reservations attached to this approach but if it does drastically shift the stage at which we can detect tumors it may also transpire that their more naïve forms, in which fewer mutations have accumulated, are more susceptible to inhibitory drugs. If that were to be the case then even our currently rather bare, though slowly expanding, drug cabinet may turn out to be quite powerful.

Holiday Reading (2) – Poking the Blancmange

An evolutionary hiccup

It’s well known that tracing our family tree back 400 million years reveals a fishy past. This history is enshrined in our DNA in the pattern of nerves that control breathing. From time to time that control throws a wobbly in the form of involuntary spasms of the diaphragm manifested as a fit of hiccups – what the medics call singultus, which in Latin means sobbing – readily brought on by contemplating a comprehensive map of intracellular signalling pathways. Hiccups, however, are caused, as Neil Shubin, in his wonderful book Your Inner Fish has explained, by a mis-firing neuron in our brain stems that produces the type of electric signals that control the regular motion of amphibian gills. A genetic recipe hoarded in the nuclear loft is inadvertently recalled. For the most part this result of DIY evolution is no more than mildly embarrassing, although the poor fellow who made the Guinness Book of Records by hiccupping for 68 years may have used a stronger term.

As we’re really talking about cancer, we should mention that persistent spasms of hiccups and difficultly swallowing may be indicators of esophageal cancer, where a tumour in the gullet (the tube connecting the back of the mouth to the stomach) grows into the trachea and flips the hiccup switch by mechanical pressure.

Je pense, donc je suis un blanc-manger

Whilst the key feature of all these pathways is that they connect the outside world to the nucleus of a cell, it’s become clear that each pathway does not exist in isolation. Individual pathways can talk to each other – sometimes called cross-talk – individual domino runs intersecting, if you like. So evolution has cooked up thousands of proteins floating around in our cells that can be mapped into discrete signal pathways but, in the molecular jostle of the cell, each may affect any of the others – if not directly then via just a few intermediates. To avoid the Tokyo subway syndrome it’s easiest to think of the cell as a blancmange: poke it anywhere and the whole thing wobbles.


The complex network of signalling pathways in cells.

Left: the dots represent proteins that inter-communicate (lines) – best thought of as a blancmange.

Why is grasping this picture of what seems like a molecular madhouse important? Well, one thing we should bear in mind is that the set-up may look chaotic to us but our cells somehow make perfect sense of it all because they take clear decisions as to what to do. But the reason for grappling with it at all, other than to be humbled by our ignorance, is that these signal systems are a major target for anti-cancer drugs. To be more precise, it’s disruptions in these proliferation-controlling pathways, caused by mutations, at which we take aim with the contents of our drug cocktail cabinet.

What goes wrong in cancer?

If you want a three word definition of cancer ‘cells behaving badly’ will do fine. If you insist on being scientific ‘abnormal cell proliferation’ covers it nicely, meaning that control of cell replication has been overcome to the extent that cells reproduce more rapidly than they should or at an inappropriate time or in the wrong place. Underlying this abnormal behaviour is damage to DNA, that is, mutations. This remains true even if the initial cause does not directly affect DNA. It’s estimated that about 20% of the global cancer burden comes from infections, mainly in contaminated drinking water. These can cause chronic inflammation that eventually leads to mutations and thence to cancer. Other factors, for example, tobacco smoke and radiation, can directly damage DNA and about 10% of cancers are set off by what you might call a taxing inheritance – mutations already present in DNA at birth.

The capacity for high-throughput sequencing of complete human genomes has spawned ambitious projects that include Genomics England’s sequencing of 100,000 genomes by 2017 and The Cancer Genome Atlas that aims to provide a mutation data base for all the major cancers. One of the most mind-boggling facts that has already emerged from this revolution is the extent of disruption that can occur in the genomes of cancer cells: as many as one hundred thousand mutations within one cell. For the sake of completeness we should note that, cancer being cancer, the mutational spectrum is astonishing and, at the other end of the scale, there’s a childhood leukemia that results from just one change to DNA and there’s a type of central nervous system tumour that appears to develop without any mutations at all. For the most part, however, cancer cells carry a mind-boggling number of mutations and the assumption, nay hope, is that the vast majority of these changes are ‘passenger’ mutations that do not affect cellular behaviour: they’re a by-product of the genetic mayhem characterizing cancer cells. The ones that count are ‘driver’ mutations that can arise in any of several hundred of our 20,000 or so genes, changing the activity of the proteins they encode to contribute to cancer development. Only a small number (half a dozen or so), of these drivers, acting together, is required for cancer to emerge. Thus, although only a relatively small group of ‘drivers’ is needed, almost limitless combinations can arise.

The accumulation of mutations takes time, which is why cancers are largely diseases of old age: two thirds of them only appear in people over the age of sixty. The estimate is that if we lived to 140 everyone would get cancer but, pending that happy day, when or whether the disease manifests itself in an individual is indeed a matter of genetic roulette – genetic evolution within cancer cells. So wonderful has the technology become we can now inspect individual cells in tumours to reveal that driver mutations occur in single cells that can expand to form groups of cells, called clones. These multiple clones can modulate their mutational profile independently and, as a result, proliferate at different rates. So you can picture tumours as a complex patchwork of genetically related, competing clones. In other words, as we’ve suspected all along, cancers are a form of dynamic Darwinism.

The critical point is that key mutations drive cancer and they do so by upsetting the normal working of signal pathways that control whether cells proliferate or not. You could say it’s Nature poking the blancmange but these are delicately selected pokes – the product of the evolution of a cancer’s genetic signature – that just tweak signalling mechanisms enough to make cells a little more likely to multiply. In coming up with drugs that target specific mutations we’re giving the blancmange another poke – the aim being, of course, to prod it back to normality.

An obvious question

Having mentioned that, albeit very rarely, cancers emerge that don’t seem to be driven by changes in the sequence of DNA – how do they do that? The answer lies in epigenetic modifications – any modification of DNA, other than in the sequence of bases, that affects how an organism develops or functions. They’re brought about by tacking small chemical groups either on to some of the bases in DNA itself or on to the proteins (histones) that act like cotton reels around which DNA wraps itself. In effect this makes the DNA more difficult to get at for the molecular machines that turn the information in genes into proteins. So these small chemical additions act as a kind of ‘super switch’ that can, for example, block genes that act as brakes on cell proliferation – hence promoting cancer.


Neil Shubin Your Inner Fish, Random House, 2008.

Put A Cap On It

If you’re not too selective in your reading you may have spotted ‘a new test which can predict with 100 per cent accuracy whether a person will develop cancer up to 13 years in the future’ trumpeted, needless to say, by The Telegraph and The Independent. No one with much of a clue about biology would write such a line and, somewhat surprisingly, it was left to the Daily Mail to produce a more balanced account of a study from Northwestern University that measured the length of telomeres in blood over time to see if that could be used as a marker for cancer development.

How long is a cap?

Telomeres: protective DNA caps on the ends of chromosomes

Telomeres: protective DNA caps on the ends of chromosomes

Telomeres are short, repeated sequences of DNA that ‘cap’ the ends of our 46 chromosomes but the cell machinery that makes DNA can’t manage to replicate the tips of the caps, so every time a new cell is made the ends of each telomere get lost. Which is of no matter to individual cells (as telomeres don’t code for protein) but their continuing loss in all cells would mean the species couldn’t survive. Accordingly, germline cells (through which sexual reproduction occurs) make an enzyme called telomerase that can achieve the trick of replicating the ends of chromosomes. In all other types of cell, however, telomerase is almost undetectable—its gene is still present, of course, but its almost completely ‘switched off,’ never to be turned on again. Never, that is, unless the cell becomes a tumor cell – most primary tumours make substantial amounts of telomerase, so they can maintain the length of their telomeres and can grow indefinitely.

The new study showed, as expected, that the telomeres in white blood cells get shorter with age but the striking finding was that, on average, shortening happens a shade more rapidly in individuals who went on to develop cancer than in those who did not. However, for the cancer group in the three to four years before diagnosis telomere attrition ceased, cap length becoming relatively stable, presumably as a result of telomerase being switched on. In other words, it seems that cancer development may actually increase telomere shortening in the period before telomerase kicks in to maintain ‘immortality’ in the tumour cell. The presumption is that this effect shows up in white cells in circulating blood because at least some of them will have encountered the ‘tumour microenviroment’ that we visited last time.

And the truth of the matter …

Do these results justify the headlines that (yet again) so annoyed me? As ever, it’s not a bad idea to read what the boffins who did the work actually said about their study, to wit, that it “… enabled us to establish temporal associations between blood telomere length and cancer risk … However, our findings should be confirmed in future studies. Our sample size limited our ability to analyze specific cancer subtypes other than prostate cancer. Thus, caution should be exercised in interpreting our results as different cancer subtypes have different biological mechanisms, and our low sample size increases the possibility of our findings being due to random chance and/or our measures of association being artificially high.”

Well said lads: no hype there, just an honest assessment – but bear in mind if you ever tire of science you’ll never get a job as a journalist.


Hou, L. et al. (2015). Blood Telomere Length Attrition and Cancer Development in the Normative Aging. EBioMedicine doi:10.1016/j.ebiom.2015.04.008.

Trouble With The Neighbours

It may seem odd to the point of negligence that a problem mankind has been grappling with since at least the time of the ancient Egyptians should, within the last ten years or so, be shown to have a whole new dimension, scarcely conceived hitherto. This hidden world, often now called the tumour microenvironment, is created as solid tumours develop and attract a variety of normal cells from the host to form a cellular cloud that envelops them and supports their growth (as we noted in Cooperative Cancer Groupies). We shouldn’t beat ourselves up for being slow to grasp its existence yet alone its importance – just take it as a reminder of the multi-faceted complexity that is cancer.

It’s true that over one hundred years ago the London physician Stephen Paget came up with his “seed and soil” idea – the notion that when cells escape from a primary tumour and spread to secondary sites (metastasis) they need to find a suitable spot that will nourish their growth, otherwise they perish – a fate that befalls most of them, fortunately for us.

But in the twenty-first century …

Perceptive though that idea was, it didn’t relate to the goings on in the vicinity of primary tumours – where the current picture is indeed of a cosmopolitan crowd of cellular groupies being recruited as the tumor starts to grow such that they infiltrate and closely interact with the cancer cells. The groupies are attracted by chemical messengers released by tumour cells – but it becomes a two-way communication, with messenger proteins shuttling to and fro between the different cell types.

Tumor uenvirThe tumour neighbourhood.

Two-way communication between host cells and tumor cells.

 White blood cells (e.g., lymphocytes and macrophages) are one group that succumbs to the magnetism of tumours. They’re part of the immune response that initially tries to eliminate the abnormal growth but, in an extraordinary transformation, when tumour cells manage to evade this defense the recruited cells change sides so to speak, switching their action to release signals that actively support tumor growth. The idea of boosting the initial anti-tumour response, thereby using the host defence system to increase the efficiency of tumour elimination, is the basis of immunotherapy, a popular research field at present to which we will return in a later piece.

Who’s who among the groupies

The finding that cells flooding into the ambience of a tumour can affect growth of the cancer has focussed attention on identifying all the constituents of the cellular cloud and unraveling their actions. Two recent studies by Claudio Isella from the University of Turin and Alexandre Calon from Barcelona, with their colleagues, have looked at a type of bowel cancer that has a particularly poor prognosis and used an ingenious ploy to lift the veil on who’s doing what to whom in the tumour milieu.

The tumours were initially classified on the basis of a genetic signature – that is, a snapshot of which genes are active in a tumour sample – ‘switched on’ or ‘expressed’ in the jargon – meaning that the information encoded in a stretch of DNA sequence is being used to make a functional gene product, usually a protein. They then used the crafty tactic of implanting human tumour cells into mice (the mice are ‘immunocompromised’ so that they don’t reject the human cells), separated the major types of cell in the tumours that grew and then looked at the genes expressed in those sub-sets. Remarkably, it emerged that, of the cell groupies that infiltrate into primary tumours, fibroblasts are particularly potent at driving tumour growth and metastasis. Fibroblasts are a cell type that makes the molecular scaffold that gives structure and shape to the various tissues and organs in animals – so it’s a surprise, to say the least, to find that cells with a rather mundane day job can play an important role in cancer progression. In this model system the sequence differences between corresponding human and mouse genes confirm that the predominant driver is mouse cells infiltrating the human tumours. Perhaps it shouldn’t be quite such a shock to find fibroblasts dabbling in cancer as we have met cancer-associated fibroblasts (CAFs) before as cells that, by releasing leptin, can promote the growth and invasion of breast cancer cells (in Isn’t Science Wonderful? Obesity Talks to Cancer).

How useful might this be?

As ever, this is just one more small step. However, the other key finding from this work is that a critical signal for the CAFs is a protein called transforming growth factor beta (TGFβ) and a small molecule that blocks its signal inhibits metastasis of human tumour cells in the mouse model. So yet again the cancer biologist’s best friend gives a glimmering of hope for human therapy.


Isella, C. et al. (2015). Stromal contribution to the colorectal cancer transcriptome. Nature Genet.

Calon, A. et al. (2015). Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genet.