Hitchhiker Or Driver?

 

It’s a little while since we talked about what you might call our hidden self — the vast army of bugs that colonises our nooks and crannies, especially our intestines, and that is essential to our survival.

In Our Inner Self we noted that these little guys outnumber the human cells that make up the body by about ten to one. Actually that estimate has recently been revised — downwards you might be relieved to hear — to about 1.3 bacterial cells per human cell but it doesn’t really matter. They are a major part of what’s called the microbiome — a vast army of microorganisms that call our bodies home but on which we also depend for our very survival.

In our personal army there’s something like 700 different species of bacteria, with thirty or forty making up the majority. We upset them at our peril. Artificial sweeteners, widely used as food additives, can change the proportions of types of gut bacteria. Some antibiotics that kill off bacteria can make mice obese — and they probably do the same to us. Obese humans do indeed have reduced numbers of bugs and obesity itself is associated with increased cancer risk.

In it’s a small world we met two major bacterial sub-families, Bacteroidetes and Firmicutes, and noted that their levels appear to affect the development of liver and bowel cancers. Well, the Bs & Fs are still around you’ll be glad to know but in a recent piece of work the limelight has been taken by another bunch of Fs — a sub-group (i.e. related to the Bs & Fs) called Fusobacterium.

It’s been known for a few years that human colon cancers carry enriched levels of these bugs compared to non-cancerous colon tissues — suggesting, though not proving, that Fusobacteria may be pro-tumorigenic. In the latest, pretty amazing, installment Susan Bullman and colleagues from Harvard, Yale and Barcelona have shown that not merely is Fusobacterium part of the microbiome that colonises human colon cancers but that when these growths spread to distant sites (i.e. metastasise) the little Fs tag along for the ride! 

Bacteria in a primary human bowel tumour.  The arrows show tumour cells infected with Fusobacteria (red dots).

Bacteria in a liver metastasis of the same bowel tumour.  Though more difficult to see, the  red dot (arrow) marks the presence of bacteria from the original tumour. From Bullman et al., 2017.

In other words, when metastasis kicks in it’s not just the tumour cells that escape from the primary site but a whole community of host cells and bugs that sets sail on the high seas of the circulatory system.

But doesn’t that suggest that these bugs might be doing something to help the growth and spread of these tumours? And if so might that suggest that … of course it does and Bullman & Co did the experiment. They tried an antibiotic that kills Fusobacteria (metronidazole) to see if it had any effect on F–carrying tumours. Sure enough it reduced the number of bugs and slowed the growth of human tumour cells in mice.

Growth of human tumour cells in mice. The antibiotic metronidazole slows the growth of these tumour by about 30%. From Bullman et al., 2017.

We’re still a long way from a human therapy but it is quite a startling thought that antibiotics might one day find a place in the cancer drug cabinet.

Reference

Bullman, S. et al. (2017). Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science  358, 1443-1448. DOI: 10.1126/science.aal5240

Advertisements

Much Ado About … Some Things

Given that the ‘festive season’ is approaching, maybe we should try to find something joyous to say about cancer. It’s not difficult. Over the last 60 years (1950-2013) the 5-year Relative Survival Rates for white Americans for breast and prostate cancers have gone from about 50% to over 90% (99.6% in fact for prostate). A number of other types (e.g., testicular cancer) are now largely curable, if treated early enough. Similar trends have occurred in most developed countries – all this through advances in surgery and radiotherapy but, most of all, because of new drugs.

Big Pharma

It’s big business. According to the Financial Times, annual spending on cancer drugs hit $100 billion worldwide in 2014 and is projected to exceed $150 billion by 2020. As you would hope, this expenditure on drug development and production has resulted in a gradual rise in available cancer drugs, represented below by the number of new cancer drugs approved each year by the American Food and Drug Administration (FDA).

Number of new cancer drugs approved each year by the American Food and Drug Administration from 1949 to 2016 (from Hope Cristol, The American Cancer Society, 2016).

Data compiled from drugs@fda.gov, National Cancer Institute, FDA Orange Book, FDA.gov, and centerwatch.com. Reporting and analysis by Sabrina Singleton, ACS research historian.

We should note that the FDA equivalent on this side of the Atlantic is the European Medicines Agency (EMA) and they tend to follow similar licensing patterns. Thus in 2016 a total of 74 new drug approvals were granted by the FDA and the EMA — 19 by the EMA only, 19 by only the FDA, with 36 approved by both. Of the drugs approved by the EMA in 2016, 17 had received prior FDA approval (i.e. in 2015 or earlier). However, only six drugs registered in the US in 2016 had prior EMA approval, indicating that drug companies tend to apply for approval in the US first before registering their products in the EU.

So rejoice and be merry — and drink to the triumph of science!!

It’s not unbounded joy, of course, because global cancer incidence continues to rise and a number of cancers (e.g., lung, liver and pancreas) remain refractive to all approaches thus far with survival rates stuck below 20%.

A Winter’s Tale

But what’s this? A further, wintry blast of reality from The British Medical Journal no less. It comes from Courtney Davis and her friends at King’s College London and the London School of Economics and Political Science (LSE) who looked at the track record of cancer drugs approved by the EMA between 2009 and 2013. Over this period the EMA approved the use of 48 new cancer drugs.

Charge your glass

It might be a good idea to sit down with a stiff drink at this point and remind ourselves that there are only two aims for cancer drugs: they must either extend the life of the patient or improve their quality of life.

What Dr. D & chums found was — and here, to be absolutely clear, we should quote exactly what they said — “… that most drugs entered the market without evidence of benefit on survival or quality of life. At a minimum of 3.3 years after market entry, there was still no conclusive evidence that these drugs either extended or improved life for most cancer indications. When there were survival gains over existing treatment options or placebo, they were often marginal.”

To be precise, it was 57% (39 of the 68 drugs) that entered the market with no evidence that they improved survival or quality of life.

Cripes!

What does this mean – and how can it be?

Well, first up, clearly a lot of money has been spent by drug companies and health services for absolutely no benefit to patients. Unsurprisingly the authors of the study called on the EMA to “increase the evidence bar for the market authorisation of new cancer drugs.” Which I take to mean ‘get some meaningful data before you stick stuff out there.’ But here’s where things get tricky. If your aim is to extend life, how can you prove a drug works other than by giving it to a significant number of patients and waiting a long time to see what happens?

The way round this has been for clinical trials to use indirect or “surrogate” measures of drug efficacy. The idea is that these endpoints show whether a drug has biological activity and thus might be of clinical use. However, they are not reliable measures of improved quality of life or survival.

So this report leaves us with a long-standing problem. On the one hand there is the understandable drive to get new drugs to patients asap but, on the other, there is the fact that only human beings can model how well a drug works in us. However good your in vitro systems may be and however closely mice may resemble men, they’re not the real thing.

One thing we could do that the report suggests, is to integrate the development and commercialization of cancer drugs at least across the two biggest markets of America and Europe so that the FDA and the EMA don’t appear to be operating in parallel worlds.

All told then, perhaps we should supplant our earlier merriment with the chilling thought that, even after so many years of perspiration and inspiration, cancers still present an immense challenge.

References

Davis, C. et al. (2017). Availability of evidence of benefits on overall survival and quality of life of cancer drugs approved by European Medicines Agency: retrospective cohort study of drug approvals 2009-13. BMJ 2017;359:j4530 doi: 10.1136/bmj.j4530 (Published 2017 October 03).

SEER Cancer Statistics Review (CSR) 1975-2014, updated June 28, 2017.

Cristol, H. (2016). Evolution and Future of Cancer Treatments, The American Cancer Society.

 

Another Peek At The Poor Little Devils

A couple of years ago (July 2014) I wrote a piece called Heir of the Dog that featured Tasmanian devils. The size of a small dog, these iconic little chaps are the largest meat-eating marsupials in the world. I’d run into them at The Lone Pine Koala Sanctuary in Brisbane where they’re keeping company with the dozy, furry tree-climbers as part of a programme to save them – the devils, that is – from extinction by cancer.

animal-fact-guide

A Tasmanian devil. Photo: Animal Fact Guide

1024px-sarcophilus_harrisii_taranna

 

 

 

 

 

 

 

imgresTheir problem comes from their inclination to bite one another, thereby directly passing on living cancer cells (causing devil facial tumour disease – DFTD). At that time the only other known example of transmissible cancer was a rare disease in dogs (canine transmissible venereal tumour – CTVT).

Genetic archaeology

DNA sequencing (i.e. whole genome analysis) had shown that the sexually transmitted dog disease probably arose thousands of years ago in a wolf or East Asian breed of dog and that the descendants of those cells are now present in infected dogs around the world.

The same approach applied to the Tasmanian devil showed that the cancer first arose in a female. Cells derived from that original tumour have subsequently spread through the Tasmanian population, the clone evolving (i.e. genetically diverging) over time. In contrast to the canine disease, DFTD is probably not more than 20 years old. Nevertheless, it spread through the wild population to the extent that the species was listed as endangered in 2008 by the International Union for Conservation of Nature.

Which is why a lot of effort is going into saving them, one approach being a number of breeding programmes in mainland Australia, with the aim of transferring uninfected animals to Tasmania.

One good turn …?

We’re all in favour of saving the little fellows, even if you probably wouldn’t want one as a pet. But, smelly and ferocious as he is, the Tasmanian devil is turning out to be remarkable in ways that suggest they might repay our efforts to keep them going. Things have moved apace down under with Greg Woods, Ruth Pye, Elizabeth Murchison, Andrew Storfer and colleagues from the Universities of Tasmania, Cambridge, Southampton and Washington State making some remarkable discoveries.

Infected animals do indeed develop the most unpleasant, large tumours that are virtually 100% fatal – to the extent that DFTD has wiped out 80% of Tasmanian devils in just 20 years. But some animals survive, even though models of the epidemiology say they shouldn’t. Andrew Storfer’s group asked how they pulled off this trick by looking for genetic changes in almost 300 devils. Quite amazingly, they found that even in a period as short as 20 years there were seven different genes that appeared to have changed (i.e. mutated) in response to selection imposed by the disease. Five of these genes encode proteins known to be associated with cancer risk or the immune system in other mammals, including humans. It seems that the mutations help their immune system to adapt so that it can recognize and destroy tumour cells.

In parallel with those studies, Greg Woods and his team now have a vaccine that looks promising early in trials – in other words a way of boosting natural immunity. We are only just beginning to find ways of giving the human immune system a helping hand – hence the burgeoning field of immunotherapy – so anything that works in another animal might give some useful pointers for us.

sick-tasTasmanian devil facial tumour disease.

This has killed 80% of the wild Australian animals in just a few decades.

Photograph: Menna Jones.

As if that wasn’t enough, a second strain of cancer has been found in a small group of male Tasmanian devils. It causes fatal facial tumours that look much the same as the first DFTD. However, it has a completely different genetic cause – so different in fact that it carries a Y chromosome, clear indication that the two forms of the disease arose by quite distinct mechanisms – which makes this marsupial the only species known to be affected by two types of transmissible of cancer.

Milk and human kindness

On top of all that some brave souls at Sydney University, Emma Peel and Menna Jones, decided in that way that scientists do, to collect some milk from the ferocious furries, just to see if it was interesting. Astonishingly the marsupial milk contained small proteins (peptides) that could kill a variety of bugs. They’re called cathelicidins and one of the things they can target is methicillin-resistant Staphylococcus aureus – MRSA – one of the dreaded ‘superbugs’ that are resistant to penicillin and other antibiotics. It’s not clear whether these peptides help to protect the devils from cancer but if that’s how turns out it might be incredibly important for us. As for their antibiotic potential, well, as it’s predicted that by 2050 superbugs will be killing one of us every three seconds you could say that opportunity beckons.

So that’s all incredibly exciting – and not just for the Tassie devils. ­ But another reason for returning to this story is that the devils have recently been joined by another example of extraordinary cancer transmission – and this one comes from the last place on the planet that you’d look for it ….

References

Murchison, E.P. et al. (2012). Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer. Cell 148, 780–791.

Pye, R.J. et al. (2016). A second transmissible cancer in Tasmanian devils. Proceedings of the National Academy of Sciences USA, 113, 374–379.

Epstein, B. et al. (2016). Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nature Communications 7, Article number: 12684: doi:10.1038/ncomms12684.

Peel, E. et al. (2016). Cathelicidins in the Tasmanian devil (Sarcophilus harrisii). Scientific Reports 6, Article number: 35019. doi:10.1038/srep35019.

Re-writing the Manual of Life

A little while ago we talked about a fantastic triumph by a team at Great Ormond Street Hospital (Gosh! Wonderful GOSH) in using a form of immunotherapy to save a little girl. What they did was to take the T cells from a sample of her blood and use gene editing – molecular cutting and pasting – to remove some genes and add others before growing more of the cells and then putting them back into the patient.

Gene editing – genetic engineering that removes or inserts sections of DNA – uses engineered nucleases, enzymes that snip DNA but do so in a controlled way by homing in on a specific site (i.e. a defined sequence of As, Cs, Gs and Ts).

We mentioned that there are four main ways of doing this kind of engineering – the GOSH group used ‘transcription activator-like effectors’ (TALEs). However, the method that has made the biggest headlines is called CRISPR/Cas, and it has been very much in the news because a legal battle is underway to determine who did what in its development and who, therefore, will be first in line for a Nobel Prize.

Fortunately we can ignore such base pursuits and look instead at where this technology might be taking us.

What is CRISPR/Cas?

CRISPRs (pronounced crispers) are bits of DNA that contain short repetitions of base sequence, each next to a ‘spacer’ sequence. The spacers have accumulated in bacteria as a defence mechanism – they’re part of the bacterial immune system – and they’re identical to sequences found in viruses that infect microbes. In other words, the cunning bugs pick up bits of dangerous viruses to make a rogues gallery so they can recognize and attack those viruses next time they pop in.

Close to CRISPR sit genes encoding Cas proteins (enzymes that cut DNA, so they’re ‘nucleases’). When the CRISPR-spacer DNA is read by the machinery of the cell to make RNA, the spacer regions stick to Cas proteins and the whole complex, including the viral sequences, can roam the cell seeking a virus with genetic material that matches the CRISPR RNA. The CRISPR RNA sticks to the virus and Cas chops its DNA – end of virus. So Cas, by binding to CRISPR RNA, becomes an RNA-guided DNA cutter.

crispr-pic

CRISPR-CAS: Bug defence against invaders. Viruses can attack bacteria just as they can human cells. Over time bugs have evolved a cunning defence strategy: they insert short bits of viral DNA into their own genome (above). These contain repeated sequences of bases and each is followed by short segments of ‘spacer DNA’ (above). This happens next to DNA that encodes Cas proteins so that both are ‘read’ to make RNA (transcription). Cas proteins bind to spacer RNA, leaving the adjacent viral RNA free to attach to any complementary viral DNA it encounters. The Cas enzyme is thus guided to DNA that it can cleave. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats.

Why is CRISPR/Cas in the headlines?

We saw in Gosh! Wonderful GOSH how the Great Ormond Street Hospital team tinkered with DNA and in Self Help – Part 2 we summarized another way of doing this using viruses (notably a disabled form of the human immunodeficiency virus) to carry novel genes into cells.

A further arm of immunotherapy attempts to reverse an effect called checkpoint blockade whereby the immune system response to tumours is damped down – e.g. by using antibodies that target a protein called PD-1 (Self Help – Part 1).

Now comes news of a Chinese trial which will be the first time cells modified using CRISPR–Cas9 gene editing have been injected into people. The chap in charge is Lu You from Sichuan University’s West China Hospital in Chengdu and the plan is to take T cells from the blood patients with metastatic non-small cell lung cancer for whom chemotherapy, radiation therapy and other treatments have failed.

The target will be the PD-1 gene, the idea being that, if you want to stop PD-1 doing its stuff, far better than mucking about with antibodies is to just knock out its gene: no gene no protein! What could possibly go wrong?

Well, wonderful though CRISPR is, it doesn’t always hit the right target but in this trial the cells can be tested to make sure it’s the PD-1 gene that’s been zonked – so that shouldn’t be a problem. However, it’s a blockbuster in that all the multiplied T cells put back into the patient will be active – i.e. will have lost the PD-1 brake. Whilst that may be good for zonking tumours, goodness knows what it might do elsewhere.

The initial trial is on a small scale – just 10 people. If there are problems one possibility is to try to take the T cells from the site of the tumour, which might select those specifically targeting the tumour – not straightforward as lung cancers are difficult to get at.

Anyone for a DNA upgrade?

It’s hard to say where all this is leading. However, as Chinese scientists have already made the first CRISPR-edited human embryos and the first CRISPR-edited monkeys, the only safe bet is that China will be to the fore.

 

The Shocking Effect of Boiled Bugs

There’s never a dull moment in science – well, not many – and at the moment no field is fizzing more than immunotherapy. Just the other day in Outsourcing the Immune Response we talked about the astonishing finding that cells from healthy people could be used to boost the immune response – a variant on the idea of taking from patients cells that attack cancers, growing them in the lab and using genetic engineering to increase potency (generally called adoptive cell therapy).

A general prod

Just when you thought that was as smart as it could get, along comes Angus Dalgleish and chums from various centres in the UK and Spain with yet another way to give the immune system a shock. They used microorganisms (i.e. bugs) as a tweaker. The idea is that bacteria (that have been heat-killed) are injected, they interact with the host’s immune system and, by altering the proteins expressed on immune cells (macrophages, natural killer cells and T cells) can boost the immune response. That in turn can act to kill tumour cells. It’s a general ‘immunomodulatory’ effect. Dalgleish describes it as “rather like depth-charging the immune system which has been sent to sleep”. Well, giving it a prod at least.

bugs-pic

Inactivating bugs (bacteria) and waking up the immune system.

And a promising effect

The Anglo-Spanish effort used IMM-101 (a heat-killed suspension of a bacterium called Mycobacterium obuense) injected under the skin, which has no significant side-effects. The trial was carried out in patients with advanced pancreatic cancer, a disease with dismal prognosis, and IMM-101 immunotherapy was combined with the standard chemotherapy drug (gemcitabine). IMM-101increased survival from a median of 4.4 months to 7 months with some patients living for more than a year and one for nearly three years.

Although the trial numbers are small as yet, this is a very exciting advance because it looks as though immunotherapy may be able to control one of the most serious of cancers in which its incidence nearly matches its mortality.

References

Dalgleish, A. et al. (2016). Randomised, open-label, phase II study of gemcitabine with and without IMM-101 for advanced pancreatic cancer. British Journal of Cancer doi: 10.1038/bjc.2016.271.

 

Going With The Flow

The next time you happen to be in Paris and have a spare moment you might wander over to, or even up, the Eiffel Tower. The exercise will do you good, assuming you don’t have a heart attack, and you can extend your knowledge of science by scanning the names of 72 French scientists that you’ll find beneath the square thing that looks like a 1st floor balcony. Chances are you won’t recognize any of them: they really are History Boys – only two were still alive when Gustave Eiffel’s exhibit was opened for the 1889 World’s Fair.

One of the army of unknowns is a certain Michel Eugène Chevreul – and he’s a notable unknown in that he gave us the name of what is today perhaps the most familiar biological chemical – after DNA, of course. Although Chevreul came up with the name (in 1815) it was another Frenchman, François Poulletier de la Salle who, in 1769, first extracted the stuff from gallstones.

A few clues

The ‘stuff’ has turned out to be essential for all animal life. It’s present in most of the foods we eat (apart from fruit and nuts) and it’s so important that we actually make about one gram of it every day to keep up our total of some 35 grams – mostly to be found in cell membranes and particularly in the plasma membrane, the outer envelope that forms the boundary of each cell. The cell membrane protects the cell from the outside world but it also has to allow chemicals to get in and out and to permit receptor proteins to transmit signals across the barrier. For this it needs to be flexible – which why membranes are formed from two layers of lipids back-to-back. The lipid molecules have two bits: a head that likes to be in contact with water (blue blobs in picture) to which is attached two ‘tails’ ­– fatty acid chains (fatty acids are unbranched chains of carbon atoms with a methyl group (CH3–) at one end and a carboxyl group (–COOH) at the other).

Bilayer

Cholesterol_molecule_ball

A lipid bilayer                                          

De la Salle’s substance

 

The lipid ‘tails’ can waggle around, giving the plasma membrane its fluid nature and, to balance this, membranes contain roughly one molecule of ‘stuff’ for every lipid (the yellow strands in the lipid bilayer). As you can see from the model of the substance found by de la Salle, it has four carbon rings with a short, fatty acid-like tail (the red blob is an oxygen atom). This enables it to slot in between the lipid tails, strengthening the plasma membrane by making it a bit more rigid, so it’s harder for small molecules to get across unless there is a specific protein carrier.

Bilayer aThe plasma membrane. A fluid bilayer made of phospholipids and cholesterol permits proteins to diffuse within the membrane and allows flexibility in their 3D structures so that they can transport small molecules and respond to extracellular signals.


De la Salle’s ‘stuff’ has become famous because high levels have been associated with heart disease and much effort has gone into producing and promoting drugs that reduce its level in the blood. This despite the fact that numerous studies have shown that lowering the amount of ‘stuff’ in our blood has little effect on mortality. In fact, if you want to avoid cardiovascular problems it’s clear your best bet is to eat a Mediterranean diet (mostly plant-based foods) that will make no impact on your circulating levels of ‘stuff’.

By now you will have worked out that the name Chevreul came up with all those years ago is cholesterol and it will probably have occurred to you that it’s pretty obvious that our efforts to tinker with it are doomed to failure.

We’ve known for along time that if you eat lots of cholesterol it doesn’t make much difference to how much there is in your bloodstream – mainly because cholesterol in foods is poorly absorbed. What’s more, because it’s so important, any changes we try to make in cholesterol levels are compensated for by alterations the internal production system.

Given how important it is and the fact that we both eat and make cholesterol, it’s not surprising that quite complicated systems have evolved for carting it around the body and delivering it to the right places. These involve what you might think of as molecular container ships: called lipoproteins they are large complexes of lipids (including cholesterol) held together by proteins. The cholesterol they carry comes in two forms: cholesterol itself and cholesterol esters formed by adding a fatty acid chain to one end of the molecule – which makes them less soluble in water.

lipoprotein-structureChol est fig

Lipoprotein                                                               Cholesterol ester

Formed by an enzyme – ACAT –
adding a fatty acid to cholesterol.
Avasimibe blocks this step.

 

So famous has cholesterol become even its taxi service has passed into common language – almost everyone knows that high-density lipoproteins (HDLs) carry so-called ‘good cholesterol’ (back to the liver for catabolism) – low concentrations of these are associated with a higher risk of atherosclerosis. On the other hand, high concentrations of low-density lipoproteins (LDLs) go with increasing severity of cardiovascular disease – so LDLs are ‘bad cholesterol’.

What’s this got to do with cancer?

The evidence that cholesterol levels play a role in cancer is conflicting. A number of studies report an association between raised blood cholesterol level and various types of cancer, whilst others indicate no association or the converse – that low cholesterol levels are linked to cancers. However, the Cancer Genome Atlas (TCGA) that profiles DNA mutations and protein expression reveals that the activity of some genes involved in cholesterol synthesis reflect patient survival for some cancer types: increased cholesterol synthesis correlating with decreased survival. Perhaps that accounts for evidence that the class of cholesterol lowering drugs called statins can have anti-tumour effects.

In a recent development Wei Yang and colleagues from various centres in China have come up with a trick that links cholesterol metabolism to cancer immunotherapy. They used a drug (avasimibe) that blocks the activity of the enzyme that converts cholesterol to cholesterol ester (that’s acetyl-CoA acetyltransferase – ACAT1). The effect of the drug is to raise cholesterol levels in cell membranes, in particular, in killer T cells. As we’ve noted, this will make the membranes a bit more rigid and a side-effect of that is to drive T cell receptors into clusters.

One or two other things happen but the upshot is that the killer T cells interact more effectively with target tumour cells and toxin release by the T cells – and hence tumour cell killing – is more efficient. The anti-cancer immune response has been boosted.

Remarkably, it turned out that when mice were genetically modified so that their T cells lacked ACAT1, a subset of these cells (CD8+) up-regulated their cholesterol synthesis machinery. Whilst this seems a paradoxical response, it’s very handy because it is these CD8+ cells that kill tumour cells. Avasimibe has been shown to be safe for short-term use in humans but the genetic engineering experiments in mice suggest that a similar approach, knocking out ACAT1, could be used in human immunotherapy.

References

Yang, W. et al. (2016). Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655.

Dustin, M.L. (2016). Cancer immunotherapy: Killers on sterols. Nature 531, 583–584.

 

Invisible Army Rouses Home Guard

Writing this blog – perhaps any blog – is an odd pastime because you never really know who, if anyone, reads it or what they get out of it. Regardless of that, one person that it certainly helps is me. That is, trying to make sense of the latest cancer news is one of the best possible exercises for making you think clearly – well, as clearly as I can manage!

But over the years one other rather comforting thing has emerged: more and more often I sit down to write a story about a recent bit of science only to remember that it picks up a thread from a piece I wrote months or sometimes years ago. And that’s really cheering because it’s a kind of marker for progression – another small step forward.

Thus it was with this week’s headline news that a ‘cancer vaccine’ might be on the way. In fact this development takes up more than one strand because it’s about immunotherapy – the latest craze – that we’ve broadly explained in Self Help Part-1Gosh! Wonderful GOSH and Blowing-up Cancer and it uses artificial nanoparticles that we met in Taking a Swiss Army Knife to Cancer.

Arming the troops

What Lena Kranz and her friends from various centres in Germany described is yet another twist on the idea of giving our inbuilt defence – i.e. the immune system – a helping hand to tackle tumours. They made small sacs of lipid called nanoparticles (they’re so small you could get 300 in the width of a human hair), loaded them with bits of RNA and injected them into mice. This invisible army of fatty blobs was swept around the circulatory system whereupon two very surprising things happened. The first was that, with a little bit of fiddling (trying different proportions of lipid and RNA), the nanoparticles were taken up by two types of immune cells, with very little appearing in any other cells. This rather fortuitous result is really important because it means that the therapeutic agent (nanoparticles) don’t need to be directly targetted to a tumour cell – thus avoiding one of the perpetual problems of therapy.

The second event that was not at all a ‘gimme’ was that the immune cells (dendritic cells and macrophages) were stimulated to make interferon and they also used the RNA from the nanoparticles as if it was their own to make the encoded proteins – a set of tumour antigens (tumour antigens are proteins made by tumour cells that can be useful in identifying the cells. A large number of have now been found: one group of tumour antigens includes HER2 that we met as a drug target in Where’s That Tumour?)

The interferon was released into the tumour environment in two waves, bringing about the ‘priming’ of T lymphocytes so that, interacting via tumour antigens, they can kill target cells. By contrast with taking cells from the host and carrying out genetic engineering in the lab (Gosh! Wonderful GOSH), this approach is a sort of internal re-wiring achieved by giving a sub-set of immune system cells a bit of genetic code (in the form of RNA).

TAgs RNA Nano picNanoparticle cancer vaccine. Tiny particles (made of lipids) carry RNA into cells of the immune system (dendritic cells and macrophages) in mice. A sub-set of these cells releases a chemical signal (interferon) that promotes the activation of T lymphocytes. The imported RNA is translated into proteins (tumour antigens) – that are presented to T cells. A second wave of interferon (released from macrophages) completes T cell priming so that they are able to attack tumour cells by recognizing antigens on their surface (Kranz et al. 2016; De Vries and Figdor, 2016).

So far Kranz et al. have only tried this method in three patients with melanoma. All three made interferon and developed strong T-cell responses. As with all other immunotherapies, therefore, it is early days but the fact that widely differing strategies give a strong boost to the immune system is hugely encouraging.

Other ‘cancer vaccines’

As a footnote we might add that there are several ‘cancer vaccines’ approved by the US Food and Drug Administration (FDA). These include vaccines against hepatitis B virus and human papillomavirus, along with sipuleucel-T (for the treatment of prostate cancer), and the first oncolytic virus therapy, talimogene laherparepvec (T-VEC, or Imlygic®) for the treatment of some patients with metastatic melanoma.

How was it for you?

As we began by pointing out how good writing these pieces to clarify science is for me, the question for those dear readers who’ve made it to the end is: ‘How did I do?’

References

Kranz, L.M. et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016) doi:10.1038/nature18300.

De Vries, J. and Figdor, C. (2016). Immunotherapy: Cancer vaccine triggers antiviral-type defences.Nature (2016) doi:10.1038/nature18443.

 

New Era … Or Déjà vu?

 

Readers who follow events in the US of A – beyond the bizarre unfolding of the selection of the Republican Party’s nominee for President of the United States – may have noticed that the presidential incumbent put forward another of his bright ideas in the 2016 State of the Union Address. The plan launched by President Obama is to eliminate cancer and to this end $1 billion is to go into a national initiative with a strong focus on earlier detection, immunotherapy and drug combinations. It’s called a Moonshot’, presumably as a nod to President Kennedy’s 1961 statement that America should land a man on the moon (and bring him back!).011316_SOTU_THUMB_LARGE

A key aim of Moonshot is to improve all-round collaboration and to ‘bring about a decade’s worth of advances in five years.’ Part of this involvesbreaking down silos’ – which apparently is business-speak (and therefore a new one on me) for dealing with the problem of folk not wanting to share things with others in the same line of work. So someone’s spotted that science and medicine are not immune to this frailty.silo_mentality

On the home front …

In fact the President could be said to be slightly off the pace as, in October 2015, Cancer Research UK launched ‘Grand Challenges’ – a more modest (£100M) drive to tackle the most important questions in cancer. They’ve pinpointed seven problems and, helpfully, six of these will not be new to dedicated readers of these pages. They are:

  1. To develop vaccines (i.e. immunotherapy) to prevent non-viral cancers;
  2. To eradicate the 200,000 cancers caused each year by the Epstein Barr Virus;
  3. To understand the mutation patterns caused by different cancer-causing events;
  4. To improve early detection;
  5. To map the complexity of tumours at the molecular and cellular level;
  6. To find a way of targetting the cancer super-controller MYC;
  7. To work out how to target anti-cancer drugs to specific cells in the body.

{No/. 2 is the odd one out so it clearly hasn’t been too high a priority for me but we did talk about Epstein Barr Virus in Betrayed by Nature – phew!}.

But wait a minute

Readers of a certain age may be thinking this all sounds a bit familiar and, of course, they’re right. It was in 1971 that President Richard Nixon launched the ‘war on cancer’, the aim of which was to, er, to eliminate cancers. Given that 45 years on in the USA there’ll be more than 1.6 million new cases of cancer and 600,000 cancer deaths this year, it’s tempting to conclude that all we’ve learned is that things are a lot more complicated than we ever imagined.

Well, you can say that again. Of the several hundred genes that we now know can play a role in cancers, two are massively important MYC (‘mick’) and P53. Screen the scientific literature for research publications with one of those names in the title and you get, wait for it, over 50,000 for ‘MYC’ and for P53 over 168,000. It’s impossible to grasp how many hours of global sweat and toil went into churning out that amount of work – and that’s studies of just two bits of the jigsaw!

So 45 years of digging have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and cancer rates remain below 5% 1%, respectively. For these and other cancers there has been very little progress.

So 45 years of digging away have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and pancreatic cancer rates remain below 5% and 1%, respectively. For these and other cancers there has been very little progress.

All systems go?

Well, maybe. Moonshot is aimed at better and earlier diagnosis, more precise surgery and radiotherapy, and more drugs that can be better targeted. Oh, and bearing in mind that one in three cancers could be prevented, keeping plugging away at lifestyle factors.

How will it fare? Well, now we’re in the genomic era we can be sure that the facts mountain resulting from 45 years of collective toil will be as a molehill to the Everest of data now being mined and analysed. From that will emerge, we can assume with some confidence, a gradual refinement of the factors that are critical in determining the most effective treatment for an individual cancer.

Just recently we described in The Shape of Things to Come the astonishingly detailed picture that can be drawn of an individual tumour when it’s subjected to the full technological barrage now available. As we learn more about the critical factors, immunotherapy regimens will become more precise and the current response rate of about 10% of patients will rise.

Progress will still be slow, as we noted in The Shape of Things to Come – don’t expect miracles but, with lots of money, things will get better.

The Shape of Things to Come?

One of the problems of trying to keep up with cancer – and indeed helping others to do so – is that you (i.e. ‘I’) get really irritated with the gentlemen and ladies of the press for going over the top in their efforts to cover science. I have therefore been forced to have a few rants about this in the past – actually, when I came to take stock, even I was a bit shocked at how many. Heading the field were Not Another Great Cancer Breakthough, Put A Cap On It and Gentlemen… For Goodness Sake. And not all of these were provoked by The Daily Telegraph!

If any of the responsible reporters read this blog they probably write me off as auditioning for the Grumpy Old Men tv series. But at least one authoritative voice says I’m really very sane and balanced (OK, it’s mine). Evidence? The other day I spotted the dreaded G word (groundbreaking) closely juxtaposed to poor old Achilles’ heel – and yes, it was in the Telegraph – but, when I got round to reading the paper, I had to admit that the work referred to was pretty stunning. Although, let’s be clear, such verbiage should still be banned.

A Tumour Tour de Force

The paper concerned was published in the leading journal Science by Nicholas McGranahan, Charles Swanton and colleagues from University College London and Cancer Research UK. It described a remarkable concentration of current molecular fire-power to dissect the fine detail of what’s going on in solid tumours. They focused on lung cancers and the key steps used to paint the picture were as follows:

1. DNA sequencing to identify mutations that produced new proteins in tumour cells (called tumour-associated antigens or ‘neoantigens’ – meaning molecular flags on the cell surface that can provoke an immune response – i.e. the host makes antibody proteins that react with (stick to) the antigens). Typically they found just over 300 of these ‘neoantigens’ per tumour – a reflection of the genetic mayhem that occurs in cancer.

2 tumoursVariation in neoantigen profile between two multi-region sequenced non-small cell lung tumours. There were approximately 400 (left) and 300 (right) neoantigens/tumour

  • Blue: proportion of clonal neoantigens found in every tumour region.
  • Yellow: subclonal neoantigens shared in multiple but not all tumour regions.
  • Red: subclonal (‘private’) neoantigens found in only one tumour region.
  • The left hand tumour (mostly blue, thus highly clonal) responded well to immunotherapy (from McGranahan et al. 2016).

2. Screening the set of genes that regulate the immune system – that is, make proteins that detect which cells belong to our body and which are ‘foreign.’ This is the human leukocyte antigen (HLA) system that is used to match donors for transplants – called HLA typing.

3. Isolating specialised immune cells (T lymphocytes) from samples of two patients with lung cancer, growing them in the lab to expand the population and testing how good these tumour-infiltrating cells were at recognizing the abnormal proteins (neo-antigens) on cancer cells.

4. Detecting proteins released by different types of infiltrating T cells that regulate the immune response. These include so-called immune checkpoint molecules that limit the extent of the immune response. This showed that T cell subsets that were very good at recognizing neo-antigens – and thus killing cancer cells (they’re CD8+ T cells or ‘killer’ T cells) also made high levels of proteins that restrain the immune response (e.g., PD-1).

5. Showing that immunotherapy (using the antibody pembrolizumab that reacts with PD-1) could significantly extend survival of patients with advanced non-small cell lung cancer. We’ve already met this approach in Self-help Part 1.

The critical finding was that the complexity of the tumour (called the clonal architecture) determines the outcome. Durable benefit from this immunotherapy requires a high level of mutation but a restricted range of neo-antigens. Put another way, tumours that are highly clonal respond best because they have common molecular flags present on every tumour cell.

6. Using the same methods on some skin cancers (melanomas) with similar results.

What did this astonishing assembly of results tell us?

It’s the most detailed picture yet of what’s going on in individual cancers. As one of the authors, Charles Swanton, remarked “This is exciting. This opens up a way to look at individual patients’ tumours and profile all the antigen variations to figure out the best ways for treatments to work. This takes personalised medicine to its absolute limit where each patient would have a unique, bespoke treatment.”

He might have added that it’s going to take a bit of time and a lot of money. But as a demonstration of 21st century medical science it’s an absolute cracker!

References

McGranahan et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 10.1126/science.aaf490 (2016).

 

Gosh! Wonderful GOSH

Anyone who reads these pages will long ago, I trust, have been persuaded that the molecular biology of cells is fascinating, beautiful and utterly absorbing – and all that is still true even when something goes wrong and cancers make their unwelcome appearance. Which makes cancer a brilliant topic to talk and write about – you know your audience will be captivated (well, unless you’re utterly hopeless). There’s only one snag, namely that – perhaps because of the unwelcome nature of cancers – it’s tough to make jokes. One of the best reviews I had for Betrayed by Nature was terrifically nice about it but at the end, presumably feeling that he had to balance things up, the reviewer commented that it: “..is perhaps a little too light-hearted at times…” Thank you so much anonymous critic! Crikey! If I’d been trying to do slap-stick I’d have bunged in a few of those lewd chemicals – a touch of erectone, a bit of PORN, etc. (btw, the former is used in traditional Chinese medicine to treat arthritis and the latter is poly-ornithinine, so calm down).

I guess my serious referee may have spotted that I included a poem – well, two actually, one written by the great JBS Haldane in 1964 when he discovered he had bowel cancer which begins:

I wish I had the voice of Homer

To sing of rectal carcinoma,

Which kills a lot more chaps, in fact,
Than were bumped off when Troy was sacked.

Those couplets may reflect much of JBS with whom I can’t compete but, nevertheless, in Betrayed by Nature I took a deep breath and had a go at an update that began:

Long gone are the days of Homer
But not so those of carcinoma,
Of sarcoma and leukemia

And other cancers familia.
But nowadays we meet pre-school
That great and wondrous Molecule.
We know now from the knee of Mater
That DNA’s the great creator.

and went on:

But DNA makes cancer too

Time enough—it’ll happen to you.
“No worries sport” as some would say,
These days it’s “omics” all the way.

So heed the words of JBS

Who years ago, though in distress,
Gave this advice on what to do

When something odd happens to you:
“Take blood and bumps to your physician
Whose only aim is your remission.”

I’d rather forgotten my poem until in just the last week there hit the press a story illustrating that although cancer mayn’t be particularly fertile ground for funnies it does gloriously uplifting like nothing else. It was an account of how science and medicine had come together at Great Ormond Street Hospital to save a life and it was even more thrilling because the life was that of a little girl just two years old. The saga brought my poem to mind and it seemed, though I say it myself, rather spot on.

The little girl, Layla, was three months old when she was diagnosed with acute lymphoblastic leukemia (ALL) caused by a piece of her DNA misbehaving by upping sticks and moving to a new home on another chromosome – one way in which genetic damage can lead to cancer. By her first birthday chemotherapy and a bone marrow transplant had failed and the only remaining option appeared to be palliative care. At this point the GOSH team obtained special dispensation to try a novel immunotherapy using what are being called “designer immune cells“. Over a few months Layla recovered and is now free of cancer. However, there are no reports of Waseem Qasim and his colleagues at GOSH and at University College London dancing and singing the Trafalgar Square fountains – they’re such a reserved lot these scientists and doctors.

How did they do it?

In principle they used the gene therapy approach that, helpfully, we described recently (Self Help Part 2). T cells isolated from a blood sample have novel genes inserted into their DNA and are grown in the lab before infusing into the patient. The idea is to improve the efficiency with which the T cells target a particular protein (CD19) present on the surface of the leukemia cells by giving them artificial T cell receptors (also known as chimeric T cell receptors or chimeric antigen receptors (CARs) – because they’re made by fusing several bits together to make something that sticks to the target ‘antigen’ – CD19). The engineered receptors thereby boost the immune response against the leukemia. The new genetic material is inserted into a virus that carries it into the cells. So established is this method that you can buy such modified cells from the French biotech company Cellectis.

105 picAdoptive cell transfer immunotherapy. T cells are isolated from a blood sample and novel genes inserted into their DNA. The GOSH treatment also uses gene editing by TALENs to delete two genes. The engineered T cells are expanded, selected and then infused into the patient.

Is that all?

Not quite. To give themselves a better chance the team added a couple of extra tricks. First they included in the virus a second gene, RQR8, that encodes two proteins – this helps with identifying and selecting the modified cells. The second ploy is, perhaps, the most exciting of all: they used gene editing – a rapidly developing field that permits DNA in cells to be modified directly: it really amounts to molecular cutting and pasting. Also called ‘genome editing’ or ‘genome editing with engineered nucleases’ (GEEN), this form of genetic engineering removes or inserts sections of DNA, thereby modifying the genome.

The ‘cutting’ is done by proteins (enzymes called nucleases) that snip both strands of DNA – creating double-strand breaks. So nucleases are ‘molecular scissors.’ Once a double-strand break has been made the built-in systems of cells swing into action to repair the damage (i.e. stick the DNA back together as best it can without worrying about any snipped bits – these natural processes are homologous recombination and non-homologous end-joining, though we don’t need to bother about them here).

To be of any use the nucleases need to be targeted – made to home in on a specific site (DNA sequence) – and for this the GOSH group used ‘transcription activator-like effectors’ (TALEs). The origins of these proteins could hardly be further away from cancer – they come from a family of bacteria that attacks hundreds of different types of plants from cotton to fruit and nut trees, giving rise to things like citrus canker and black rot. About six years ago Jens Boch of the Martin-Luther-University in Halle and Adam Bogdanove at Iowa State University with their colleagues showed that these bugs did their dirty deeds by binding to regulatory regions of DNA thereby changing the expression of genes, hence affecting cell behavior. It turned out that their specificity came from a remarkably simple code formed by the amino acids of TALE proteins. From that it’s a relatively simple step to make artificial TALE proteins to target precise stretches of DNA and to couple them to a nuclease to do the cutting. The whole thing makes a TALEN (transcription activator-like effector nuclease). TALE proteins work in pairs (i.e. they bind as dimers on a target DNA site) so an artificial TALEN is like using both your hands to grip a piece of wood either side of the point where, using your third hand, you make the cut. The DNA that encodes the whole thing is inserted into plasmids that are transfected into the target cells; the expressed gene products then enter the nucleus to work on the host cell’s genome. There are currently three other approaches to nuclease engineering (zinc finger nucleases, the CRISPR/Cas system and meganucleases) but we can leave them for another time.

The TALENs made by the GOSH group knocked out the T cell receptor (to eliminate the risk of an immune reaction against the engineered T cells (called graft-versus-host disease) and CD52 (encodes a protein on the surface of mature lymphocytes that is the target of the monoclonal antibody alemtuzumab – so this drug can be used to prevent rejection by the host without affecting the engineered T cells).

What next?

This wonderful result is not a permanent cure for Layla but it appears to be working to stave off the disease whilst she awaits a matched T cell donor. It’s worth noting that a rather similar approach has been used with some success in treating HIV patients but it should be born in mind that, brilliant though these advances are, they are not without risks – for example, it’s possible that the vector (virus) that delivers DNA might have long-term effects – only time will tell.

Almost the most important thing in this story is what the GOSH group didn’t do. They used the TALENs gene editing method to knock out genes but it’s also a way of inserting new DNA. All you need to do is add double-stranded DNA fragments in the correct form at the same time and the cell’s repair system will incorporate them into the genome. That offers the possibility of being able to repair DNA damage that has caused loss of gene function – a major factor in almost all cancers. Although there is still no way of tackling the associated problem of how to target gene editing to tumour cells, it may be that Layla’s triumph is a really significant step for cancer therapy.

Reference

Smith, J. et al. (2015). UCART19, an allogeneic “off-the-shelf” adoptive T-cell immunotherapy against CD19+ B-cell leukemias. Journal of Clinical Oncology 33, 2015 (suppl; abstr 3069).