Now wash your hands!


You must have spent the last 20 years on a distant planet if you’re unaware that we’re heading for Antibiotic Armaggedon — the rise of “Superbugs”, i.e., bacteria resistant to once-successful medication. Microbes resistant to multiple antimicrobials are called multidrug resistant. It’s a desperate matter because it means trivial infections may become fatal and currently safe surgical procedures may become dangerous.

Time-line of the discovery of different antibiotic classes in clinical use. The key point is that the last antibiotic class to become a successful treatment was discovered in 1987.

What’s the problem?
It’s 30 years since we came up a new class of antibiotics. The golden age launched by Fleming’s celebrated discovery of penicillin is long gone and while the discovery curve has drifted ever downwards since 1960 the bugs have been busy.

Just how busy a bug can be was shown by a large-scale experiment carried out by Roy Kishony and friends. They built a “Mega-Plate” — a Petri Dish 2 ft by 4 ft filled with a jelly for the bacteria to grow in. The bugs were seeded into channels at either end so they would grow towards the middle. The only thing stopping them was four channels dosed with antibiotic at increasing concentrations — 10 times more in each successive channel.

The bugs grow until they hit a wall of antibiotic. There they pause for a think — and, after a bit, an intrepid little group start to make their way into the higher dose of drug. Gradually the number of groups expand until a tidal wave sweeps over that barrier. This is repeated at each new ‘wall’ — four times until the whole tray is a bug fest.

When they pause at each new ‘wall’ they’re not ‘thinking’ of course. They’re just picking up random mutations in their DNA until they are able to advance into the high drug environment. So this experiment is a fantastic visual display of bugs becoming drug-resistant. And it’s terrifying because it takes about 11 days for them to overcome four levels of drug. It’s even more scary in the speeded-up movie as that lasts less than two minutes.

Sound familiar?
It should do as this is a cancer column and readers will know that cancers arise by picking up mutations. To highlight the similarities the picture below is the left-hand half of the bug tray with new colonies shown as linked dots. You could perfectly well think of these as early stage cancer cells acquiring mutations in ‘driver’ genes that push them towards tumour formation.

So that’s pretty scary too and the only good news is that animal cells reproduce much more slowly than bacteria. The fastest they can manage is about 48 hours to grow and divide into two new cells and for many it’s much slower than that. Bugs, on the other hand, can do it in 20 minutes if you feed them enough of the right stuff.

Which is why we don’t all get zonked by cancer at an early age.

The evolution of bacteria on a “Mega-Plate” Petri Dish. The vertical red lines mark the boundaries of increasing antibiotic concentrations. You could equally think of each dot that represents a new bacterial colony being early stage cancer cells acquiring mutations in ‘driver’ genes (white arrows) that push them towards tumour formation. From Roy Kishony’s Laboratory at Harvard Medical School.

Enough of that!
But for once I don’t want to talk about cancer but about a really fascinating piece of work that caught my eye in the journal Cell Reports. It’s by Gianni Panagiotou, Kang Kang and colleagues from The University of Hong Kong and The Hans Knöll Institute, Jena, Germany and it’s all about their travels on the Hong Kong MTR (Mass Transit Railway). This is the network of over 200 km of railway lines with 159 stations that serves the urbanised areas of Hong Kong IslandKowloon, and the New Territories and has a cross- border connection to the neighboring city of Shenzhen in mainland China.

An MTR train on the Tung Chung line that links Lantau Island with Hong Kong Island.

Being scientists of course they weren’t just having a day out. They wanted to know the contents of the microbiome that they and their fellow travellers picked up on the palms of their hands when riding the rails. ‘Microbiome’ means all of the collection of microorganisms — though in practice this is almost entirely bacteria. So they swabbed the palms of volunteers and then threw the full power of modern DNA sequencing and genetic analysis at what they’d scraped off. Or, as they put it: “We conducted a metagenomic study of the Hong Kong MTR system.”

And if you’re thinking it might be possible to take a trip on the Hong Kong Metro without grabbing a handrail or otherwise engaging in what on the London Underground used to be called ‘strap-hanging’ you clearly haven’t tried it!

Hong Kong MTR.


The MTR System and Sampling Procedure. Left: The eight urban lines studied: the Airport Express line and Disneyland Resort branch were excluded. The Central-Hong Kong station and the cross-border rail stations connecting with the MTR and the Shenzhen metro system are labeled. Right: The sampling procedure included handwashing, handrail touching for 30 min and swabbing. From Kang et al. 2018.

Hold very tight please! 

It’s going to become a seriously bumpy ride. The major findings were:

  1. Four groups (phyla) of bacteria dominated: Actinobacteria [51%], Proteobacteria [27%], Firmicutes [11%] and Bacteroidetes [2%]. Followers of this blog will be delighted to spot the last two (B & F) as we’ve met them several times before (in Hitchhiker Or Driver?, Fast Food Fix Focuses on Fibre, Our Inner Self, The Best Laid Plans In Mice and Men, and, of course, in it’s a small world) — that’s how important they are in the context of cancer.
  2. The dominant organism (29% of the community) was P. acnes (one of the Actinobacteria — it’s the bug linked to the skin condition of acne).
  3. Some non-human-associated species (e.g., soil organisms) also popped up that varied enormously in amount from day to day — perhaps because of weather conditions (e.g., humidity).
  4. Variation in the make-up of the microbial communities picked up depended, more than anything else, on the time of day. There was a marked decrease in diversity in afternoon samples compared with those taken in the morning.
  5. Specific species of bacteria associated with individual metro lines. That is, sets of bug types are relatively abundant on a given line compared with all other lines, giving a kind of line-specific signature — though the distinction declines from morning to afternoon. The most physically isolated line, MOS (Ma On Shan), had a greater number of signature species. The MOS runs entirely above ground alongside the Shing Mun Channel, a polluted brackish river, and its ‘signature’ includes bacteria found in sewage.
  6. All of which brings us to bugs with antibiotic resistance genes (ARGs). Across the network 136 ARG families were detected including 24 that are clinically important. Strikingly, lines closer to Shenzhen (ER (East Rail) and MOS) tend to have higher ARG input during the day. Critically, the ER line a.m. signatures become p.m.-enriched in all MTR lines far from Shenzhen — that is, these ARG families spread over the network during the day.

Simplified map of the Hong Kong MTR indicating how antibiotic resistance genes spread during the day from the ER and MOS lines to the entire network. Tetracycline resistance genes: tetA, tetO, tetRRPP and tetMWOS; vancomycin resistance genes: vanC, vanX. From Kang et al. 2018.

These results clearly suggest that the ER line, the only cross-border line linked to mainland China, may be a source of clinically important ARGs, especially against tetracycline, a commonly used antibiotic in China’s swine feedlots. Antibiotics, including tetracycline, can be detected in the soil in the Pearl River Delta area where the cities of Hong Kong and Shenzhen are located.

It should be said that this is by no means the first survey of bugs on rails. Notable ones have looked at the New York and Boston metro systems and they too revealed the potential health risks of the bug communities found on trains and in the stations, including the presence of pathogens and antibiotic resistance. The Boston survey highlighted that different types of materials have surfaces that are preferred by different microbes with high variation in functional capacity and pathogenic potential.

One obvious suggestion from these studies is that world-wide we could do a lot to improve sanitation, e.g., by having hand sanitizer dispensers in all sensible places (at the exits of metro, railway and bike-sharing stations and airports and of course in hospitals). The Hong Kong data are seriously frightening and most people seem blissfully unaware that the invisible world they reveal carries the potential for the destruction of us all.

But, as ever, there’s two sides to the matter. We’ve evolved over millions of years to live with bugs and they with us. However you wash your hands you won’t get rid of every bug and anyway, as what’s-his-name almost says, “They’ll be back!” We all carry around micro-organisms that can be fatal if they get to the wrong place. But, if you’re reasonably fit, there’s a lot to be said for simply following sensible, basic hygiene rules with a philosophy of ‘live and let live.’

Have a nice day commuters, wherever you are!


Kang K., et al. (2018). The Environmental Exposures and Inner- and Intercity Traffic Flows of the Metro System May Contribute to the Skin Microbiome and Resistome. Cell Reports 24, 1190–1202.

Wu, N., Qiao, M., Zhang, B., Cheng, W.D., and Zhu, Y.G. (2010). Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ. Sci. Technol. 44, 6933–6939.

Li, Y.W., Wu, X.L., Mo, C.H., Tai, Y.P., Huang, X.P., and Xiang, L. (2011). Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. J. Agric. Food Chem. 59, 7268–7276.

Leung, M.H., Wilkins, D., Li, E.K., Kong, F.K., and Lee, P.K. (2014). Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl. Environ. Microbiol. 80, 6760–6770.

Robertson, C.E., Baumgartner, L.K., Harris, J.K., Peterson, K.L., Stevens, M.J., Frank, D.N., and Pace, N.R. (2013). Culture-independent analysis of aerosol microbiology in a metropolitan subway system. Appl. Environ. Microbiol. 79, 3485–3493.

Afshinnekoo, E., Meydan, C., Chowdhury, S., Jaroudi, D., Boyer, C., Bernstein, N., Maritz, J.M., Reeves, D., Gandara, J., Chhangawala, S., et al. (2015). Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics. Cell Syst 1, 72–87.

Hsu, T., Joice, R., Vallarino, J., Abu-Ali, G., Hartmann, E.M., Shafquat, A., Du- Long, C., Baranowski, C., Gevers, D., Green, J.L., et al. (2016). Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment. mSystems 1, e00018–e00016.


Through the Smokescreen

For many years I was lucky enough to teach in a cancer biology course for third year natural science and medical students. Quite a few of those guys would already be eyeing up research careers and, within just a few months, some might be working on the very topics that came up in lectures. Nothing went down better, therefore, than talking about a nifty new method that had given easy-to-grasp results clearly of direct relevance to cancer.

Three cheers then for Mikhail Denissenko and friends who in 1996 published the first absolutely unequivocal evidence that a chemical in cigarette smoke could directly damage a bit of DNA that provides a major protection against cancer. The compound bound directly to several guanines in the DNA sequence that encodes P53 – the protein often called ‘the guardian of the genome’ – causing mutations. A pity poor old Fritz Lickint wasn’t around for a celebratory drink – it was he, back in the 1930s, that first spotted the link between smoking and lung cancer.

This was absolutely brilliant for showing how proteins switched on genes – and how that switch could be perturbed by mutations – because, just a couple of years earlier, Yunje Cho’s group at the Memorial Sloan-Kettering Cancer Center in New York had made crystals of P53 stuck to DNA and used X-rays to reveal the structure. This showed that six sites (amino acids) in the centre of the P53 protein poked like fingers into the groove of double-stranded DNA.

x-ray-picCentral core of P53 (grey ribbon) binding to the groove in double-stranded DNA (blue). The six amino acids (residues) most commonly mutated in p53 are shown in yellow (from Cho et al., 1994).

So that was how P53 ‘talked’ to DNA to control the expression of specific genes. What could be better then, in a talk on how DNA damage can lead to cancer, than the story of a specific chemical doing nasty things to a gene that encodes perhaps the most revered of anti-cancer proteins?

The only thing baffling the students must have been the tobacco companies insisting, as they continued to do for years, that smoking was good for you.

And twenty-something years on …?

Well, it’s taken a couple of revolutions (scientific, of course!) but in that time we’ve advanced to being able to sequence genomes at a fantastic speed for next to nothing in terms of cost. In that period too more and more data have accumulated showing the pervasive influence of the weed. In particular that not only does it cause cancer in tissues directly exposed to cigarette smoke (lung, oesophagus, larynx, mouth and throat) but it also promotes cancers in places that never see inhaled smoke: kidney, bladder, liver, pancreas, stomach, cervix, colon, rectum and white blood cells (acute myeloid leukemia). However, up until now we’ve had very little idea of what, if anything, these effects have in common in terms of molecular damage.

Applying the power of modern sequencing, Ludmil Alexandrov of the Los Alamos National Lab, along with the Wellcome Trust Sanger Institute’s Michael Stratton and their colleagues have pieced together whole-genome sequences and exome sequences (those are just the DNA that encode proteins – about 1% of the total) of over 5,000 tumours. These covered 17 smoking-associated forms of cancer and permitted comparison of tobacco smokers with never-smokers.

Let’s hear it for consistent science!

The most obvious question then is do the latest results confirm the efforts of Denissenko & Co., now some 20 years old? The latest work found that smoking could increase the mutation load in the form of multiple, distinct ‘mutational signatures’, each contributing to different extents in different cancers. And indeed in lung and larynx tumours they found the guanine-to-thymine base-pair change that Denissenko et al had observed as the result of a specific chemical attaching to DNA.

For lung cancer they concluded that, all told, about 150 mutations accumulate in a given lung cell as a result of smoking a pack of cigarettes a day for a year.

Turning to tissues that are not directly exposed to smoke, things are a bit less clear. In liver and kidney cancers smokers have a bigger load of mutations than non-smokers (as in the lung). However, and somewhat surprisingly, in other smoking-associated cancer types there were no clear differences. And even odder, there was no difference in the methylation of DNA between smokers and non-smokers – that’s the chemical tags that can be added to DNA to tune the process of transforming the genetic code into proteins. Which was strange because we know that such ‘epigenetic’ changes can occur in response to external factors, e.g., diet.

What’s going on?

Not clear beyond the clear fact that tissues directly exposed to smoke accumulate cancer-driving mutations – and the longer the exposure the bigger the burden. For tissues that don’t see smoke its effect must be indirect. A possible way for this to happen would be for smoke to cause mild inflammation that in turn causes chemical signals to be released into the circulation that in turn affect how efficiently cells repair damage to their DNA.


Sir Walt showing off on his return                         to England

Whose fault it is anyway?

So tobacco-promoted cancers still retain some of their molecular mystery as well as presenting an appalling and globally growing problem. These days a popular pastime is to find someone else to blame for anything and everything – and in the case of smoking we all know who the front-runner is. But although Sir Walter Raleigh brought tobacco to Europe (in 1578), it had clearly been in use by American natives long before he turned up and, going in the opposite direction (à la Marco Polo), the Chinese had been at it since at least the early 1500s. To its credit, China had an anti-smoking movement by 1639, during the Ming Dynasty. One of their Emperors decreed that tobacco addicts be executed and the Qing Emperor Kangxi went a step further by beheading anyone who even possessed tobacco.

And paying the price

And paying the price

If you’re thinking maybe we should get a touch more Draconian in our anti-smoking measures, it’s worth pointing out that the Chinese model hasn’t worked out too well so far. China’s currently heading for three million cancer deaths annually. About 400,000 of these are from lung cancer and the smoking trends mean this figure will be 700,000 annual deaths by 2020. The global cancer map is a great way to keep up with the stats of both lung cancer and the rest – though it’s not for those of a nervous disposition!


Denissenko, M.F. et al. ( (1996). Preferential Formation of Benzo[a]pyrene Adducts at Lung Cancer Mutational Hotspots in P53.Science 274, 430–432.

Cho, Y. et al. (1994). Crystal Structure of a p53 Tumor Suppressor-DNA Complex: Understanding Tumorigenic Mutations. Science, 265, 346-355.

Alexandrov, L.D. et al. (2016). Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618-622.