No It Isn’t!

 

It’s great that newspapers carry the number of science items they do but, as regular readers will know, there’s nothing like the typical cancer headline to get me squawking ‘No it isn’t!” Step forward The Independent with the latest: “Major breakthrough in cancer care … groundbreaking international collaboration …”

Let’s be clear: the subject usually is interesting. In this case it certainly is and it deserves better headlines.

So what has happened?

A big flurry of research papers has just emerged from a joint project of the National Cancer Institute and the National Human Genome Research Institute to make something called The Cancer Genome Atlas (TCGA). This massive initiative is, of course, an offspring of the Human Genome Project, the first full sequencing of the 3,000 million base-pairs of human DNA, completed in 2003. The intervening 15 years have seen a technical revolution, perhaps unparalled in the history of science, such that now genomes can be sequenced in an hour or two for a few hundred dollars. TCGA began in 2006 with the aim of providing a genetic data-base for three cancer types: lung, ovarian, and glioblastoma. Such was its success that it soon expanded to a vast, comprehensive dataset of more than 11,000 cases across 33 tumor types, describing the variety of molecular changes that drive the cancers. The upshot is now being called the Pan-Cancer Atlas — PanCan Atlas, for short.

What do we need to know?

Fortunately not much of the humungous amounts of detail but the scheme below gives an inkling of the scale of this wonderful endeavour — it’s from a short, very readable summary by Carolyn Hutter and Jean Claude Zenklusen.

TCGA by numbers. The scale of the effort and output from The Cancer Genome Atlas. From Hutter and Zenklusen, 2018.

The first point is obvious: sequencing 11,000 paired tumour and normal tissue samples produced mind-boggling masses of data. 2.5 petabytes, in fact. If you have to think twice about your gigas and teras, 1 PB = 1,000,000,000,000,000 B, i.e. 1015 B or 1000 terabytes. A PB is sometimes called, apparently, a quadrillion — and, as the scheme helpfully notes, you’d need over 200,000 DVDs to store it.

The 33 different tumour types included all the common cancers (breast, bowel, lung, prostate, etc.) and 10 rare types.

The figure of seven data types refers to the variety of information accumulated in these studies (e.g., mutations that affect genes, epigenetic changes (DNA methylation), RNA and protein expression, duplication or deletion of stretches of DNA (copy number variation), etc.

After which it’s worth pausing for a moment to contemplate the effort and organization involved in collecting 11,000 paired samples, sequencing them and analyzing the output. It’s true that sequencing itself is now fairly routine, but that’s still an awful lot of experiments. But think for even longer about what’s gone into making some kind of sense of the monstrous amount of data generated.

And it’s important because?

The findings confirm a trend that has begun to emerge over the last few years, namely that the classification of cancers is being redefined. Traditionally they have been grouped on the basis of the tissue of origin (breast, bowel, etc.) but this will gradually be replaced by genetic grouping, reflecting the fact that seemingly unrelated cancers can be driven by common pathways.

The most encouraging thing to come out of the genetic changes driving these tumours is that for about half of them potential treatments are already available. That’s quite a surprise but it doesn’t mean that hitting those targets will actually work as anti-cancer strategies. Nevertheless, it’s a cheering point that the output of this phenomenal project may, as one of the papers noted, serve as a launching pad for real benefit in the not too distant future.

What should science journalists do to stop upsetting me?

Read the papers they comment on rather than simply relying on press releases, never use the words ‘breakthrough’ or ‘groundbreaking’ and grasp the point that science proceeds in very small steps, not always forward, governed by available methods. This work is quite staggering for it is on a scale that is close to unimaginable and, in the end, it will lead to treatments that will affect the lives of almost everyone — but it is just another example of science doing what science does.

References

Hutter, C. and Zenklusen, J.C. (2018). The Cancer Genome Atlas: Creating Lasting Value beyond Its Data. Cell 173, 283–285.

Hoadley, K.A. et al. (2018). Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 173, 291–304.

Hoadley, K.A. et al. (2014). Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin. Cell 158, 929–944.

Advertisements

Put A Cap On It

If you’re not too selective in your reading you may have spotted ‘a new test which can predict with 100 per cent accuracy whether a person will develop cancer up to 13 years in the future’ trumpeted, needless to say, by The Telegraph and The Independent. No one with much of a clue about biology would write such a line and, somewhat surprisingly, it was left to the Daily Mail to produce a more balanced account of a study from Northwestern University that measured the length of telomeres in blood over time to see if that could be used as a marker for cancer development.

How long is a cap?

Telomeres: protective DNA caps on the ends of chromosomes

Telomeres: protective DNA caps on the ends of chromosomes

Telomeres are short, repeated sequences of DNA that ‘cap’ the ends of our 46 chromosomes but the cell machinery that makes DNA can’t manage to replicate the tips of the caps, so every time a new cell is made the ends of each telomere get lost. Which is of no matter to individual cells (as telomeres don’t code for protein) but their continuing loss in all cells would mean the species couldn’t survive. Accordingly, germline cells (through which sexual reproduction occurs) make an enzyme called telomerase that can achieve the trick of replicating the ends of chromosomes. In all other types of cell, however, telomerase is almost undetectable—its gene is still present, of course, but its almost completely ‘switched off,’ never to be turned on again. Never, that is, unless the cell becomes a tumor cell – most primary tumours make substantial amounts of telomerase, so they can maintain the length of their telomeres and can grow indefinitely.

The new study showed, as expected, that the telomeres in white blood cells get shorter with age but the striking finding was that, on average, shortening happens a shade more rapidly in individuals who went on to develop cancer than in those who did not. However, for the cancer group in the three to four years before diagnosis telomere attrition ceased, cap length becoming relatively stable, presumably as a result of telomerase being switched on. In other words, it seems that cancer development may actually increase telomere shortening in the period before telomerase kicks in to maintain ‘immortality’ in the tumour cell. The presumption is that this effect shows up in white cells in circulating blood because at least some of them will have encountered the ‘tumour microenviroment’ that we visited last time.

And the truth of the matter …

Do these results justify the headlines that (yet again) so annoyed me? As ever, it’s not a bad idea to read what the boffins who did the work actually said about their study, to wit, that it “… enabled us to establish temporal associations between blood telomere length and cancer risk … However, our findings should be confirmed in future studies. Our sample size limited our ability to analyze specific cancer subtypes other than prostate cancer. Thus, caution should be exercised in interpreting our results as different cancer subtypes have different biological mechanisms, and our low sample size increases the possibility of our findings being due to random chance and/or our measures of association being artificially high.”

Well said lads: no hype there, just an honest assessment – but bear in mind if you ever tire of science you’ll never get a job as a journalist.

Reference

Hou, L. et al. (2015). Blood Telomere Length Attrition and Cancer Development in the Normative Aging. EBioMedicine doi:10.1016/j.ebiom.2015.04.008.

Treading the Boards

If I’d asked my friends whether I should consider a debut on the West End stage I know what they would have said. So instead this week I did Cancer Crystal Ball for Robin Ince’s Christmas Science Ghosts at the Bloomsbury Theatre.

Here’s what Bruce Dessau of the London Evening Standard made of proceedings, although the review scarcely does justice to an astonishingly eclectic show!

Bruce Dessau:

Most comedy gigs offer audiences something to laugh about. Robin Ince’s annual Bloomsbury package also offers something to think about. This year’s five-night stint mixes stand-ups and scientists. With a seasonal nod to A Christmas Carol, last night’s show looked at the future.

Ince compered briskly, doing little more than pithy impressions of Brians Blessed and Cox. Having booked a preposterously epic 16 acts he exercised impressive restraint to keep the gig under three hours.

Among the experts doing some crystal ball-gazing were Ben Goldacre, who mounted a persuasive argument for more testing of statins, and cancer specialist Robin Hesketh, who had blood taken onstage — a first for a comedy gig.

Swotty storyteller Josie Long invited fans to do her A-level maths test, while Stewart Lee read from a letter supposedly penned by his 11-year-old self about the future: “There will be even more TV channels … seven. One will be just firework displays.” Joanna Neary’s Björk impersonation skirted around the futuristic theme but was so accurately nutty it hardly mattered.

It was not only the comics who raised a laugh. If you ever wondered what it would be like if Eminem rapped about the brain, catch Baba Brinkman, who closed proceedings by freestyling about neuroscience with his wife Heather Berlin. Conclusive proof that it is possible to be funny and clever.

Heir of the Dog

I’ve probably in the past owned up to causing generations of students to do that raised eyebrow thing, familiar to all parents of teenagers, that, far more pointedly than words, says ‘The old boy’s finally lost it.’ Indeed I may well have a bit of a causative repertoire but one that unfailingly works is revealing that, even after a life in science, I still get ‘Wow’ moments every couple of months or so when I read or hear of some new discovery, method or insight that brings home yet again the wonder of Nature – or has you asking ‘Why didn’t I think of that?’ (The response to that one’s easy, by the way, so please don’t write in).

A common question

The most recent of these jaw-dropping events relates to a question often asked about cancer: ‘Can you catch it from someone else?’ In other words, can cancers be passed from one person to another by infection, much as happens with ’flu? The answer’s ‘No’ but, as usual in this field, even the firmest statement can do with a little explanation. The first point is that the ‘No’ is true even for 20% or so of cancers that are actually started by microbial infection – what you might call ‘bugs’ – bacteria, fungi, and viruses. One such, the bacterium Helicobacter pylori, can cause stomach ulcers that may lead to cancer. Those even smaller bugbears, viruses (typically one one-hundredth the size of a bacterium), are responsible for much of the cervical and liver cancer burden world-wide. Oh, and there’s a little, single-cell parasite (Trichomonas vaginalis), the most common non-viral, sexually transmitted infection in the world that, in men, can cause prostate cancer. But these infections are not cancers even though they may be an underlying cause – bacteria through prolonged inflammation and effects on the immune system and viruses by making proteins that affect how cells behave. Only when these perturbations cause genetic damage – i.e. DNA mutations – do you have a cancer. Which is why the answer to the original question is ‘No.’

There’s always one

Well, two in this case – and, given that we’re talking about cancer, you won’t be surprised that there are some oddities. They’re not exceptions to the ‘No’ answer because they occur in other animals – not in humans – but, in each, tumour cells are directly transferred from one creature to another – so it is cancer by infection. One such contagious tumour occurs in the Tasmanian devil. It’s transmitted by biting, an activity popular with these little chaps, and it gives rise to a particularly virulent facial tumor, eventually fatal because it prevents eating. To counter the probability that Tasmanian devils will become extinct in their native habitat, a number of Australian sanctuaries have breeding programmes aimed at setting up a disease-free colony on Kangaroo Island, South Australia.

TDs

Tas D

 

 

 

 

 

Tasmanian devils – cancer-free – Lone Pine Koala Sanctuary, Brisbane

A very similar condition in dogs known as canine transmissible venereal tumour (CTVT: also called Sticker’s sarcoma), mainly affects the external genitalia. First spotted in the nineteenth century by a Russian vet, it too is spread either by licking or biting and also through coitus. Dogs with CTVT can now be found on five continents and, from DNA analysis, we’ve known for some time that – remarkably – all their cancers are descended from a single, original tumour cell that appeared many years ago. They’re like one of those cell lines grown in labs all over the world, except they’ve been going far longer than any lab – with man’s best friend doing the cultivating.

So what is new?

Elizabeth Murchison and colleagues at The Wellcome Trust Sanger Institute, Cambridge have just produced the first whole-genome sequences of two of these tumours – from Australia and Brazil (an Aboriginal camp dog and a purebred American cocker spaniel). These confirmed that all CTVTs descend from a single ancestor who, they estimated, was trotting around about 11,000 years ago. The last common relative of the two dogs whose tumours were sequenced lived about 500 years ago, before his descendants went walkies to different continents.

And the ‘Wow’?

We already had a pretty good idea of how CTVTs have been handed down. In this paper the really amazing bit came in the detail. The authors estimated roughly how many mutations were present in each tumour. Answer: a staggering 1.9 million. And it’s staggering partly because it’s only slightly less than a change every 1,000 units (bases) in dog DNA but it’s truly awesome when you note that it’s several hundred times more than you find in most human cancers. We’re getting used to the idea of thousands or tens of thousands of mutations turning up in human cancer cells with associated gross disruptions of individual chromosomes. But these canine cancers display genetic mayhem on a massive scale – perhaps best visualized by comparing their chromosomes with those of a normal dog using a method that labels each with a different colour. A glance at the two pictures tells the story: all the cancer chromosomes from one of the tumour-bearing dogs (on the right) have been shuffled as if in some molecular card game. The full range of colours can still be seen, but of the normal pattern of 39 pairs of identical segments of DNA (left) there is no sign.

Two dogs chromos

Dog chromosomes. Left: normal; right: CTVT

(from Murchison, E.P. et al. (2014) Science 343, 437-440)

It seems incredible that cells can survive such a shattering of their genetic material – a state called ‘genetic instability’ because, once DNA damage sets in, mutations usually continue to accumulate. These cancers are uniquely bizarre, however, because although their genomes have been blown to smithereens, not only do the cells survive but they’ve continued suspended in this surreal state for centuries. They’re genetically stable – it really is the cellular equivalent of balancing an elephant on a pin.

‘Wow’ Indeed – but so what?

So like me you’ve been blown away by these discoveries but you may be asking, apart from the excitement, what’s in it for us humans? Well, there’s one other very strange thing about these dog cancers. Infected animals do indeed develop the most unpleasant, large tumours – but most of them are eventually rejected by the host dog. That is, its immune system gets to work to eliminate them – and after that the dog is immune to further infection. We are only just beginning to find ways of boosting the human immune system so that it can attack cancers and maybe, just maybe, we can extract from the stable chaos of the CTVT genome the secret of how they provoke rejection – and maybe that will guide human treatments.

Reference

Murchison, E.P. et al. (2014). Transmissible Dog Cancer Genome Reveals the Origin and History of an Ancient Cell Lineage. Science 343, 437-440.

POTty training for chromosomes

Our genetic material comes in chunks called chromosomes, the ends of which are capped with repetitive DNA sequences called telomeres. Every time DNA is replicated to make new cells bits of the telomeres are lost – so they get shorter – and eventually this turns on a stress signal that puts a stop to further cell reproduction. So, the older you get the shorter your telomeres become and when that stops you making more cells you conk out. Lurking within our chromosomes is a gene that can stop this happening: it encodes an enzyme called, of course, telomerase that extends chromosome caps. But, you exclaim, a well-known feature of cancer cells is that they are ‘immortal’ – so they must find a way of switching on the telomerase gene that in normal cells is turned off to ensure that we don’t hang around too long. And indeed most of them do – which highlights another of life’s balancing acts: telomerase off = finite life-span, telomerase on = cancer.

Telomeres (red) cap the ends of chromosomes

Telomeres (red) cap the ends of chromosomes

Putting a cap on it

Human telomeres contain thousands of repeats of the 6-base sequence TTAGGG that cap the ends of chromosomes. To prevent these being worn away and enable cells to become ‘immortal’, the genetic mayhem that characterizes tumours usually includes a means of activating telomerase. However, you won’t be surprised to find that extending telomeres is a complicated business and the telomerase enzyme is just one bit of a multi-component molecular machine that does the job. One of the bits is a protein by the name of POT (POT1 to be precise) and a Spanish group have just shown that mutations in POT1 occur in chronic lymphocytic leukemia. Normal POT1 acts as a negative regulator that suppresses telomere extension: mutations in POT1 permit telomere extension and also enable chromosomes to fuse end-to-end with one another – a common type of genetic damage in leukemia. It appears that, although POT1 mutations are quite rare, they occur only in the clinically aggressive subtype of CLL – so they provide not only a new potential drug target but also a prognostic indicator.

Incidentally, despite what you might think, ‘cancer genes’, i.e. genes that by acting abnormally (as a result of suffering some sort of mutation, either in themselves or indirectly) can help to drive cancer development, have names that are very sensible and logical. Thus POT1 stands for protection of telomere – and it’s POT1 just in case a close rello turns up – which would be POT2.

Reference

Ramsay, A.J. et al., (2013). POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nature Genetics 45, 526–530.

http://www.readcube.com/articles/10.1038/ng.2584?locale=en

Getting your DNA in a twist

I have a good friend who has just emerged triumphant from a run-in with bowel cancer – she’s in complete remission! Almost as wonderful is the fact that colliding with cancer has converted her from a genuine non-scientist to one who devours biology like fish and chip suppers. Spotting a recent volley of media items about four-stranded ‘quadruple helix’ DNA in human cells, she was on Twitter in a flash: “Does this mean that people with cancer have lots more quadruplex DNA than normal?” As she knows I can’t stand the Tweet cult she was probably amazed to get a reply: short answer: “No.”

But as ever in science, there’s a long(er) response. So, if you’re interested in the gyrations and gymnastics of which your genetic code is capable, read on …

The DNA double helix

The DNA double helix

Beautiful DNA

As you know, DNA comes as a double helix – a 2-chain spiral of small units (called nucleotides) that stick together (the units contain bases, so they’re ‘base-paired’). The oft-reproduced double helix image is beautiful because it’s a repetitive structure and you can easily see how it can be ‘unzipped’ so that each half can be used as a template to make a copy and regions can be ‘read’ to make RNA and proteins – though it was really designed to enable biologists to make endless unzipping jokes about genes and jeans.

The two DNA molecules of the helix stick together because of a balance between three forces: (1) weak electronic attraction between some atoms in the bases (called hydrogen bonds), (2) a sort of glueyness between the bases because their chemical structure means they don’t like water much and they’d rather snuggle up together, and (3) a repulsion between the chains because of the repeated phosphate groups all the way along the backbone (these carry an electric charge and likes repel, as we know).

Ugly DNA

But with all these attractions and repulsions you might think there would be lots of ways nucleic acids could get tangled up with each other – and there is. So the common form of double helix (the beautiful shape) is B-DNA but there’s also A-DNA, C-DNA and Z-DNA. If you just change the conditions a bit (pinch of salt or whatever) you can tweak the interactions so bits of the bases that don’t interact in B-DNA will do so to give a slightly different shape (usually a bit distorted – ugly). As you can see from the structure, Z-DNA is more Homer Simpson than Watson and Crick.

B- and Z-DNA

B- and Z-DNA

B-DNA and Z-DNA

We can’t reproduce the environment of DNA in the nucleus so we don’t really have a clue but the betting is that short bits of DNA jink in and out of these odd structural formations – just as part of the continuous flexing of the molecules. There’s also a couple of other things that can happen that have been known for a long time – again just dependent on the precise conditions in which a piece of DNA finds itself.

Sexy modelling

The first is a variant on the hydrogen bonds that form between bases. One way to think of this is to imagine two circles of five people, each ring holding hands and facing outwards. Each person is an atom in the bases of DNA. Let’s think of base pairing as the two nearest in the circles getting close enough to kiss. That’s one hydrogen bond. But, of course, the two other pairs on either side will now be quite close: if one of them also manages to kiss (tongues may be used) now we have two hydrogen bonds – which is what holds the bases A and T together. But suppose that the pair on the other side (who must also be quite close with all this adjacent necking going on) decide they really fancy joining in and are so excited that they twist the circle out of shape to do so. That this can happen has been known for years (it’s called Hoogsteen base pairing after the voyeur what spotted it) and when it does it can distort the helix enough for a third DNA strand to wrap round the original two – so you get triple-stranded DNA.

A sexual need

Similarly, if you tweak the conditions you can get four strands of DNA to come together and indeed we’ve known for yonks that happens naturally during recombination (that’s when genetic material gets swapped between Mum and Dad chromosomes – the reason for sex). When that happens you can think of four DNA strands forming a cross, each quadrant contains DNA from one strand of a chromosome, base-paired to that in the next quadrant – which is how bits get swapped around.

Non-sexual hugging?

So there’s nothing new about odd DNA shapes but what has made the news is that for the first time, rather than looking at what can be made to happen in a test tube, Shankar Balasubramanian and his pals have looked in whole cells. To do this they made an antibody that sticks only to ‘quadruple helix’ DNA structures – G-quadruplexes. The upshot is that they detected quadruplexes scattered throughout chromosomes and they see more in cells that are rapidly dividing than in ones that are just sitting there (they looked in some cancer cells in culture that do divide quite rapidly – but bear in mind that in tumours cells aren’t diving all that fast). So the inference is that they might form as part of DNA replication and, if you can target them by their antibody, maybe you could do something similar with a drug that would stop cells dividing. And if you could target that to cancer cells you could stop them in their tracks.

And the catch …

Simple. But there are some problems. It’s possible the antibody helps the quadruplexes to form – so it could even be a cunning artifact. But if we assume it isn’t – then we come face to face with a really big problem. There are zillions of ways you can kill cancer cells. The difficulty is that there isn’t one that selects cancer cells from normals. It may be possible (though it’s not evident how) to target quadruplexes and block cell division – but there are lots of cells that we need to divide rapidly just to keep us going – and, if quadruplexes are real, presumably they have ’em. So non-specific killing is probably not a good idea. Twas ever thus.

References

Biffi, G., Tannahill, D., McCafferty, J. and Balasubramanian, S. (2013). Quantitative visualization of DNA G-quadruplex structures in human cells. Nature Chemistry published online: 20 January 2013 | doi: 10.1038/nchem.1548

http://www.cam.ac.uk/research/news/four-stranded-quadruple-helix-dna-structure-proven-to-exist-in-human-cells/

Don’t Read This!!

Now here’s something I bet you’ve never thought about. Well I certainly hadn’t when I stepped outside the boundary of ‘science’ and into the world of ‘pop sci’ – aka Betrayed by Nature.

Professional evisceration

To get sciency stuff published you have to endure the dread process of ‘peer review’. Your paper is sent to experts who apply their giant brains, formidable grasp of the subject and sadistic natures to a completely impartial assessment of whether it is of sufficient merit to appear in whichever journal you have favoured with your attentions. Or, put another way, it gets put through a mincer that takes fiendish delight in dissecting every syllable, making ‘suggestions’ that amount to a total re-write and demanding a further series of experiments (to ‘solidify’ the data) that would see you past retirement, if not into the beckoning abyss beyond. If, by combining grovelling submission, bartering, and deviousness you finally get the thing into print, what happens next? Nothing. Not a squeak. The vast majority of papers disappear as surely as if dropped into the Mariana Trench in a lead-lined box. Just occasionally, if a few of the co-authors have Nobel Prizes, you might find your opus clambering up one or another citation index, meaning that some other bunch of numpties have mentioned it in their own feeble scribblings – doesn’t mean they actually read it, of course. And that’s it.

Pop in public

But out in the real world ‘pop’ stuff comes out – and then gets reviewed – so it’s like writing chick-lit (I’ve no idea what that is but I quite fancy having a go). And the critics turn up from all over the place. Their views get emailed to you by well-intentioned friends, someone in the coffee queue regales you (“just seen ….”) or you stumble over one when your surfing fingers inadvertently hit ‘sci reviews’ instead of ‘sex reviews.’

So Monty Python was wrong – you do expect The Spanish Inquisition – that any minute you’ll be dragged naked through the streets of Cambridge – well, emotionally at least. So, after all that, a lady friend has told me to be a man (very naughty to have peeked) and to bravely blog reviews received.

You have been warned!

Reviews of BETRAYED BY NATURE The War on Cancer by Robin Hesketh Palgrave Macmillan 272 pp. £16.99 (2012)

1.  William Hanson, MD, author of The Edge of Medicine: Dr. Hesketh brings an expert’s easy familiarity and depth to this comprehensive, at times almost affectionate, look at a deadly adversary. He tells us what cancer is, what causes it, what we can do to prevent it and how we are systematically battling the disease on many fronts.

2.  Kirkus Reviews (The World’s Toughest Book Critics) 1 March 2012:  Informative, optimistic tour of the science of cancer: Hesketh (Biochemistry/Cambridge Univ.), familiar to lay audiences from BBC radio and TV, opens Part 1 with a capsule history of cancer, ranging from papyrus records of ancient Egypt to the scientific breakthroughs of the 21st century. He follows with a look at the distribution of different types of cancers around the world and what the data suggests about cancer’s causes. Matters get technical in Part 2, but the author assumes little previous knowledge on the part of readers; he takes time to explain DNA, RNA, genes, chromosomes and how some genes mutate into cancer genes. In Part 3 he tackles cancer cells and the behavior of tumors. Throughout Parts 2 and 3, relatively simple diagrams and some black-and-white photographs help to clarify the technical discussions. For most readers, the final section – “Where Are We? Where Are We Going?” – will be of greatest interest. Here Hesketh explains how genome sequencing has begun to change how cancers are diagnosed and classified, and the promise this holds for therapy. We are at the beginning, he writes, of the era of personalized medicine, which holds the promise that we will someday be able to detect the threat of cancer long before it manifests itself by sequencing an individual’s genome and using that information to design an individualized therapeutic strategy. The back matter includes a helpful glossary and two delightful odes to cancer, one written in 1964 by the noted geneticist (and cancer patient) J.B.S. Haldane and the other a modern version by Hesketh.

Despite the author’s occasionally breezy style – “cancer is jolly complicated” – this is not a book to breeze through, but rather a solid account of how cancer works, how it has been combated and what the future holds for its treatment.

https://www.kirkusreviews.com/search/?q=hesketh&x=16&y=13

3.  Nature 485, 579 (31 May 2012): It afflicts one in three people globally and kills more than 7 million a year. Yet cancer is, at base, simply an abnormal growth of cells. In this admirably clear overview, biochemist Robin Hesketh gives us the history, basic science and characteristics of cancer cells, charting how tumours spread and detailing genetics, detection, therapies and drugs. There is much to fascinate — from eighteenth-century physician Percivall Pott’s deduction that there was a link between soot and scrotal cancer in chimney sweeps, to the challenges of treating the biological “hodgepodge” that is a tumour.

http://libsta28.lib.cam.ac.uk:2157/nature/journal/v485/n7400/full/485579a.html

4.  John P. Moore, Professor of Microbiology and Immunology, Weill Cornell: In Betrayed by Nature, Robin Hesketh melds medicine, science and history to create a clear and highly readable explanation of the complexities of cancer.

5.  Interview on The Leonard Lopate Show: lopate050812apod.mp3

6.  For Amazon reviews see their web site.