Caveat emptor

 

It must be unprecedented for publication of a scientific research paper to make a big impact on a significant sector of the stock market. But, in these days of ‘spin-off’ companies and the promise of unimaginable riches from the application of molecular biology to every facet of medicine and biology, perhaps it was only a matter of time. Well, the time came with a bang this June when the journal Nature Medicine published two papers from different groups describing essentially the same findings. Result: three companies (CRISPR Therapeutics, Editas Medicine and Intellia) lost about 10% of their stock market value.

I should say that a former student of mine, Anthony Davies, who runs the Californian company Dark Horse Consulting Inc., mentioned these papers to me before I’d spotted them.

What on earth had they found that so scared the punters?

Well, they’d looked in some detail at CRISPR/Cas9, a method for specifically altering genes within organisms (that we described in Re-writing the Manual of Life).

Over the last five years it’s become the most widely used form of gene editing (see, e.g., Seeing a New World and Making Movies in DNA) and, as one of the hottest potatoes in science, the subject of fierce feuding over legal rights, who did what and who’s going to get a Nobel Prize. Yes, scientists do squabbling as well as anyone when the stakes are high.

Nifty though CRISPR/Cas9 is, it has not worked well in stem cells — these are the cells that can keep on making more of themselves and can turn themselves in other types of cell (i.e., differentiate — which is why they’re sometimes called pluripotent stem cells). And that’s a bit of a stumbling block because, if you want to correct a genetic disease by replacing a defective gene with one that’s OK, stem cells are a very attractive target.

Robert Ihry and colleagues at the Novartis Institutes for Biomedical Research got over this problem by modifying the Cas9 DNA construct so that it was incorporated into over 80% of stem cells and, moreover, they could switch it on by the addition of a drug. Turning on the enzyme Cas9 to make double-strand breaks in DNA in such a high proportion of cells revealed very clearly that this killed most of them.

When cells start dying the prime suspect is always P53, a so-called tumour suppressor gene, switched on in response to DNA damage. The p53 protein can activate a programme of cell suicide if the DNA cannot be adequately repaired, thereby preventing the propagation of mutations and the development of cancer. Sure enough, Ihry et al. showed that in stem cells a single cut is enough to turn on P53 — in other words, these cells are extremely sensitive to DNA damage.

Gene editing by Cas9 turns on P53 expression. Left: control cells with no activation of double strand DNA breaks; right: P53 expression (green fluorescence) several days after switching on expression of the Cas9 enzyme. Scale bar = 100 micrometers. From Ihry et al., 2018.

In a corresponding study Emma Haapaniemi and colleagues from the Karolinska Institute and the University of Cambridge, using a different type of cell (a mutated line that keeps on proliferating), showed that blocking P53 (hence preventing the damage response) improves the efficiency of genome editing. Good if you want precision genome editing by risky as it leaves the cell vulnerable to tumour-promoting mutations.

Time to buy?!

As ever, “Let the buyer beware” and this certainly isn’t a suggestion that you get on the line to your stockbroker. These results may have hit share prices but they really aren’t a surprise. What would you expect when you charge uninvited into a cell with a molecular bomb — albeit one as smart as CRISPR/Cas9. The cell responds to the DNA damage as it’s evolved to do — and we’ve known for a long time that P53 activation is exquisitely sensitive: one double-strand break in DNA is enough to turn it on. If the damage can’t be repaired P53’s job is to drive the cell to suicide — a perfect system to prevent mutations accumulating that might lead to cancer. The high sensitivity of stem cells may have evolved because they can develop into every type of cell — thus any fault could be very serious for the organism.

It’s nearly 40 years since P53 was discovered but for all the effort (over 45,000 research papers with P53 in the title) we’re still remarkably ignorant of how this “Guardian of the Genome” really works. By comparison gene editing, and CRISPR/Cas9 in particular, is in its infancy. It’s a wonderful technique and it may yet be possible to get round the problem of the DNA damage response. It may even turn out that DNA can be edited without making double strand breaks.

So maybe don’t rush to buy gene therapy shares — or to sell them. As the Harvard geneticist George Church put it “The stock market isn’t a reflection of the future.” Mind you, as a founder of Editas Medicine he’d certainly hope not.

References

Ihry, R.J. et al. (2018). p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nature Medicine, 1–8.

Haapaniemi, E. et al. (2018). CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nature Medicine (2018) 11 June 2018.

Advertisements

Seeing a New World

May I wish readers a Happy New Year – and indeed extend my felicitations to non-readers with the hope that they too will become followers! What a good idea! Not least because I suspect many are viewing the new year with a mixture of anxiety and despair. But I can promise there’s nothing like the sanity of science to restore you after a few minutes contemplating how we’re doing on the economic and political fronts.

Your starter for 2017

By happy chance a few weeks ago I tried to explain how it’s now possible to ‘re-write the manual of life’ – that is, to engineer our DNA, to fix broken genes if you like. This means that, in theory, it’s possible to correct errors in our genetic code that cause genetic diseases. As there are over 6,000 of these and they include Down syndrome, cystic fibrosis and Alzheimer’s disease, there’s no need to say it’s important. There are several ways of going about this but the one I described is called CRISPR and it’s had a lot of media coverage.

Right on cue

Well done then Keiichiro Suzuki, Juan Carlos Belmonte and friends from the Salk Institute in California together with colleagues from other centres in Spain, Saudi Arabia and China for their December paper describing a new CRISPR twist. They used a rat model of retinitis pigmentosa, a genetic disease that is a major cause of inherited blindness, afflicting about one and a half million people worldwide (one in 4,000 in the UK).

The CRISPR-Cas9 system is great but it works best in dividing cells (e.g., in skin and gut that are renewing all the time) and it’s particularly useful for knocking out genes rather than inserting new DNA. The latest modification allows a new gene to be inserted into a specific site in the DNA of cells that are not dividing (e.g., those of the eye or brain).

The bits of CRISPR-Cas9, which insert DNA at very precise locations within the genome, are delivered to target cells as part of an inert virus. However, the package also includes DNA that encourages the cells to use a repair process that can be turned on even in non-dividing cells. So CRISPR-Cas9 cuts the cell’s DNA at an exact sequence and the cell then repairs the double-strand breaks (by a process called non-homologous end joining (NHEJ) that glues the broken ends directly together). Give the cell a new bit of DNA (e.g., your favorite gene) and that will get patched in – bear in mind that the cell doesn’t ‘know’ what it’s doing: it just tries to fix damaged DNA with whatever’s at hand.

And the target?

Retinitis pigmentosa occurs when a chunk of a gene called Mertk is lost. After quite a lot of experiments to show that their method worked, Suzuki, Belmonte & Co made a viral carrier that included a normal Mertk gene and injected it under the retina of rats with the disease. After about 5 weeks the rats were making Mertk RNA as a result of the gene being correctly ‘knocked-in’ to eye cells. The light-detecting region of the eye, greatly reduced by the disease, was significantly restored, with associated appearance of MERTK protein.

      Diseased    Normal     Treated                         Diseased         Normal         Treated

pic

Left trio: Sections of the light-detecting layers of the eye in diseased (left), normal (centre) and diseased post-treatment rats (right). Right trio: corresponding fluorescence images showing MERTK expression (red: highlighted by white arrows); Cells labeled blue. (Suzuki et al. Nature 1–6 (2016) doi:10.1038/nature20565)

How did the rats see it?

Well, after treatment they were able to detect light and had significantly recovered their visual functions, albeit not to completely normal levels.

The usual caveats apply: the method isn’t hyper-efficient and a human treatment is still a long way off. Nevertheless, it’s a significant step.

The same group has also shown, using a way of re-programming the expression of just four genes, that it’s possible to arrest the signs of ageing. In other words, in mice this time, tinkering with these genes can increase lifespan – and yes, we have versions of these genes and in us they also control cell renewal.

So the New Year message is clear to see. If we can avoid turning the planet into a desert or blowing ourselves to smithereens the future is really rosy – and maybe even infinite!

References

Suzuki, K. et al. (2016). In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144-149.

Ocampo, A. et al. (2016). In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell 167, 1719–1733.