Cancer GPS?

The thing that pretty well everyone knows about cancers is that most are furtive little blighters. They kill one in three of us but usually we don’t they’re there until they are big enough to make something go wrong in the body or to show up in our seriously inadequate screening methods. In that sense they resemble heart problems of one sort or another, where often the first indication of trouble is unexpectedly finding yourself lying on the floor.

Meanwhile, out on the highways and byways you are about 75 times less likely to be killed in an accident than you are to succumb to either cancers or circulation failure. Which is a way of saying that in the UK about 2000 of us perish on the roads each year. That it’s ‘only’ 2000 is presumably because here your assailant is anything but furtive. All you’ve got to do is side-step the juggernaut and you’ll probably live to be – well, old enough to get cancer.

Did you know, by the way, that ‘juggernaut’ is said to come from the chariots of the Jagannath Temple in Puri on the east coast of India. These are vast contraptions used to carry representations of Hindu gods on annual festival days that look as though walking pace would be too much for them. So, replace the monsters on our roads with real juggernauts! Problem largely solved!!

Flagging cancer

But to get back to cancer or, more precisely, the difficulty of seeing it. After centuries of failing to make any inroads, recent dramatic advances give hope that all is about to change. These rely on the fact that tissues shed cells – and with them DNA – into the circulation. Tumours do this too – so in effect they are scattering clues to their existence into blood. By using short stretches of artificial DNA as bait, it’s possible to fish out tumour cell DNA from a few drops of blood. That’s a pretty neat trick in itself, given we’re talking about fewer than 100 tumour cells in a sea of several billion other cells in every cubic millimeter of blood.

There are two big attractions in this ‘microfluidics’ approach. First it’s almost ‘non-invasive’ in needing only a small blood sample and, second, it is possible that indicators may be picked up long before a tumour would otherwise show up. In effect it’s taking a biochemical magnifying glass to our body to ask if there’s anything there that wouldn’t normally be present. Detect a marker and you know there’s a tumour somewhere in the body, and if the marker changes in concentration in response to a treatment, you have a monitor for how well that treatment is doing. So far, so good.

And the problem?

These ‘liquid biopsy’ methods that use just a teaspoonful of blood have been under development for several years but there has been one big cloud hanging over them. They appear to be exquisitely sensitive in detecting the presence of a cancer – by sequencing the DNA picked up – but they have not been able to pinpoint the tissue of origin. Until now.

Step forward epigenetics

Shuli Kang and colleagues at the University of California at Los Angeles and the University of Southern California have broken this impasse by turning to epigenetics. We noted in Twenty More Winks that an epigenetic modification is any change in DNA, other than in the sequence of bases (i.e. mutation), that affects how an organism develops or functions. They’re brought about by tacking small chemical groups (commonly methyl (CH3) groups) either on to some of the bases in DNA itself or on to the proteins (histones) that act like cotton reels around which DNA wraps itself. The upshot is small changes in the structure of DNA that affect gene expression. You can think of DNA methylation as a series of flags dotted along the DNA strand, decorating it in a seemingly random pattern. It isn’t random, of course, and the target for methylation is a cytosine nucleotide (C) followed by a guanine (G) in the linear DNA sequence – called a CpG site because G and C are separated by one phosphate (p). Phosphate links nucleosides together in the backbone of DNA.

Cancer cells often display abnormal DNA methylation patterns – excess methylation (hypermethylation) in some regions, reduced methylation in others – that contributes to their peculiar behavior. It’s possible to determine the methylation profile of a DNA sample (by a method called bisulfite sequencing).

Kang & Co. developed a computer program to analyse methylation profiles from solid tumours and healthy samples in public databases and compare them to patient DNA of unknown tissue origin.

The peaks represent CpG clusters that characterize normal cells (top) and a variety of cancers. The key point is that the different patterns identify the tissue of origin (from Kang, S. et al., 2017).

The program’s called CancerLocator and in this initial study it was used to test samples from patients with lung, liver or breast cancer. In the modest words of the authors, CancerLocator ‘vastly outperforms’ previous methods – mind you, they struggle to even to distinguish most cancer samples from non-cancer samples. Nevertheless, CancerLocator’s a big step forward, not least because it can detect early stage cancers with 80% accuracy.

It’s also reasonable to expect major improvements as methylation sequencing becomes more extensive and higher resolution reveals more subtle signatures. What’s more, in principle, it should be able to detect all types of cancers – meaning that, after all so many centuries we may at last have a way of side-stepping the juggernaut.

References

Kang, S. et al. (2017). CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biology DOI 10.1186/s13059-017-1191-5.

Advertisements

Going With The Flow

The next time you happen to be in Paris and have a spare moment you might wander over to, or even up, the Eiffel Tower. The exercise will do you good, assuming you don’t have a heart attack, and you can extend your knowledge of science by scanning the names of 72 French scientists that you’ll find beneath the square thing that looks like a 1st floor balcony. Chances are you won’t recognize any of them: they really are History Boys – only two were still alive when Gustave Eiffel’s exhibit was opened for the 1889 World’s Fair.

One of the army of unknowns is a certain Michel Eugène Chevreul – and he’s a notable unknown in that he gave us the name of what is today perhaps the most familiar biological chemical – after DNA, of course. Although Chevreul came up with the name (in 1815) it was another Frenchman, François Poulletier de la Salle who, in 1769, first extracted the stuff from gallstones.

A few clues

The ‘stuff’ has turned out to be essential for all animal life. It’s present in most of the foods we eat (apart from fruit and nuts) and it’s so important that we actually make about one gram of it every day to keep up our total of some 35 grams – mostly to be found in cell membranes and particularly in the plasma membrane, the outer envelope that forms the boundary of each cell. The cell membrane protects the cell from the outside world but it also has to allow chemicals to get in and out and to permit receptor proteins to transmit signals across the barrier. For this it needs to be flexible – which why membranes are formed from two layers of lipids back-to-back. The lipid molecules have two bits: a head that likes to be in contact with water (blue blobs in picture) to which is attached two ‘tails’ ­– fatty acid chains (fatty acids are unbranched chains of carbon atoms with a methyl group (CH3–) at one end and a carboxyl group (–COOH) at the other).

Bilayer

Cholesterol_molecule_ball

A lipid bilayer                                          

De la Salle’s substance

 

The lipid ‘tails’ can waggle around, giving the plasma membrane its fluid nature and, to balance this, membranes contain roughly one molecule of ‘stuff’ for every lipid (the yellow strands in the lipid bilayer). As you can see from the model of the substance found by de la Salle, it has four carbon rings with a short, fatty acid-like tail (the red blob is an oxygen atom). This enables it to slot in between the lipid tails, strengthening the plasma membrane by making it a bit more rigid, so it’s harder for small molecules to get across unless there is a specific protein carrier.

Bilayer aThe plasma membrane. A fluid bilayer made of phospholipids and cholesterol permits proteins to diffuse within the membrane and allows flexibility in their 3D structures so that they can transport small molecules and respond to extracellular signals.


De la Salle’s ‘stuff’ has become famous because high levels have been associated with heart disease and much effort has gone into producing and promoting drugs that reduce its level in the blood. This despite the fact that numerous studies have shown that lowering the amount of ‘stuff’ in our blood has little effect on mortality. In fact, if you want to avoid cardiovascular problems it’s clear your best bet is to eat a Mediterranean diet (mostly plant-based foods) that will make no impact on your circulating levels of ‘stuff’.

By now you will have worked out that the name Chevreul came up with all those years ago is cholesterol and it will probably have occurred to you that it’s pretty obvious that our efforts to tinker with it are doomed to failure.

We’ve known for along time that if you eat lots of cholesterol it doesn’t make much difference to how much there is in your bloodstream – mainly because cholesterol in foods is poorly absorbed. What’s more, because it’s so important, any changes we try to make in cholesterol levels are compensated for by alterations the internal production system.

Given how important it is and the fact that we both eat and make cholesterol, it’s not surprising that quite complicated systems have evolved for carting it around the body and delivering it to the right places. These involve what you might think of as molecular container ships: called lipoproteins they are large complexes of lipids (including cholesterol) held together by proteins. The cholesterol they carry comes in two forms: cholesterol itself and cholesterol esters formed by adding a fatty acid chain to one end of the molecule – which makes them less soluble in water.

lipoprotein-structureChol est fig

Lipoprotein                                                               Cholesterol ester

Formed by an enzyme – ACAT –
adding a fatty acid to cholesterol.
Avasimibe blocks this step.

 

So famous has cholesterol become even its taxi service has passed into common language – almost everyone knows that high-density lipoproteins (HDLs) carry so-called ‘good cholesterol’ (back to the liver for catabolism) – low concentrations of these are associated with a higher risk of atherosclerosis. On the other hand, high concentrations of low-density lipoproteins (LDLs) go with increasing severity of cardiovascular disease – so LDLs are ‘bad cholesterol’.

What’s this got to do with cancer?

The evidence that cholesterol levels play a role in cancer is conflicting. A number of studies report an association between raised blood cholesterol level and various types of cancer, whilst others indicate no association or the converse – that low cholesterol levels are linked to cancers. However, the Cancer Genome Atlas (TCGA) that profiles DNA mutations and protein expression reveals that the activity of some genes involved in cholesterol synthesis reflect patient survival for some cancer types: increased cholesterol synthesis correlating with decreased survival. Perhaps that accounts for evidence that the class of cholesterol lowering drugs called statins can have anti-tumour effects.

In a recent development Wei Yang and colleagues from various centres in China have come up with a trick that links cholesterol metabolism to cancer immunotherapy. They used a drug (avasimibe) that blocks the activity of the enzyme that converts cholesterol to cholesterol ester (that’s acetyl-CoA acetyltransferase – ACAT1). The effect of the drug is to raise cholesterol levels in cell membranes, in particular, in killer T cells. As we’ve noted, this will make the membranes a bit more rigid and a side-effect of that is to drive T cell receptors into clusters.

One or two other things happen but the upshot is that the killer T cells interact more effectively with target tumour cells and toxin release by the T cells – and hence tumour cell killing – is more efficient. The anti-cancer immune response has been boosted.

Remarkably, it turned out that when mice were genetically modified so that their T cells lacked ACAT1, a subset of these cells (CD8+) up-regulated their cholesterol synthesis machinery. Whilst this seems a paradoxical response, it’s very handy because it is these CD8+ cells that kill tumour cells. Avasimibe has been shown to be safe for short-term use in humans but the genetic engineering experiments in mice suggest that a similar approach, knocking out ACAT1, could be used in human immunotherapy.

References

Yang, W. et al. (2016). Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655.

Dustin, M.L. (2016). Cancer immunotherapy: Killers on sterols. Nature 531, 583–584.

 

Pass the Aspirin

And so you should if you’ve got a headache – unless, of course, you prefer paracetamol. There can scarcely be anyone who hasn’t resorted to a dose of slightly modified salicylic acid (For the chemists: its hydroxyl group is converted into an ester group (R-OH → R-OCOCH3) in aspirin), given that the world gobbles up an estimated 40,000 tonnes of the stuff every year. It’s arguable, therefore, that an obscure clergyman by the name of Edward Stone has done more for human suffering than pretty well anyone, for it was he who, in 1763, made a powder from the bark of willow trees and discovered its wondrous property. The bark and leaves had actually been used for centuries – back at least to the time of Hippocrates – for reducing pain and fever, although it wasn’t until 1899 that Aspirin made its debut on the market and it was 1971 before John Vane discovered how it actually worked. He got a Nobel Prize for showing that it blocks production of things called prostaglandins that act a bit like hormones to regulate inflammation (for the chemists – again! – it irreversibly inactivates the enzyme cyclooxygenase, known as COX to its pals).

Daily pill popping

Aside from fixing the odd ache, over the years evidence has gradually accumulated that people at high risk of heart attack and those who have survived a heart attack should take a low-dose of aspirin every day. In addition to decreasing inflammation (by blocking prostaglandins) aspirin inhibits the formation of blood clots – so helping to prevent heart attack and stroke. Almost as a side-effect the studies that have lead to this being a firm recommendation have also shown that aspirin may reduce the risk of cancers, particularly of the bowel (colorectal cancer). Notably, Peter Rothwell and colleagues from Oxford showed that daily aspirin taken for 10 years reduced the risk of bowel cancer by 24% and also protected against oesophageal cancer – and a more recent analysis has broadly supported these findings. In addition they have also found that aspirin lowers the risk of cancers spreading around the body, i.e. forming distant metastases.

Why is aspirin giving us a headache – again?

First because a large amount of media coverage has been given to a report from Leiden University Medical Center, presented at The European Cancer Congress in September, that used Dutch records to see whether taking aspirin after being diagnosed with gastrointestinal cancer influenced survival. Their conclusion was that patients using aspirin after diagnosis doubled their survival chances compared with those who did not take aspirin. Needless to say, these words have been trumpeted by newspapers from The Times to the Daily Mail in the usual fashion (“Aspirin could almost double your chance of surviving cancer”). Unfortunately we can’t lay all the blame on the press: the authors of the report used the tactic of issuing a Press Release, a thoroughly reprehensible ploy for gaining attention when the work involved has not been peer reviewed. (The point here for non-scientists is that you can stand up at a meeting and say the moon’s made of blue cheese and it’s fine. Only after your work has been assessed by colleagues in the course of the normal publication process does it begin to have some credibility). So there’s a problem here, with what was an ‘observational study’, as to just what the findings mean – and the wise thing is to wait for the results of a ‘randomised controlled trial’ that is under way. 

The second source of mental strain is down to the ferociously named United States Preventive Services Task Force that has just (September 2015) come up with the recommendation that we should take aspirin to prevent bowel cancer. Why should we pay any attention? Because the ‘Force’ are appointed by the US Department of Health and they wield great influence upon medical practice – and because it’s the first time a major American medical organization has issued a broad recommendation to take aspirin to prevent a form of cancer.

In this latest oeuvre they confirm that the well-known risks attached to aspirin-eating (ulcers and stomach bleeding) are out-weighed by the protection against heart disease in those between the ages of 50 and 69 who are at high risk (e.g., have a history of heart attacks). If you feel your heart can take the strain you can find out your risk by using the National Heart, Lung, and Blood Institute’s online risk assessment tool. To get an answer you need to know your age, sex (i.e. gender, as its called these days), cholesterol levels (total and high density lipoproteins, HDLs – they’re the ‘good’ cholesterol), whether you smoke and your systolic blood pressure (that’s the X in X/Y).

This is such a critical issue it’s worth seeing what the Task Force actually said: “The USPSTF recommends low-dose aspirin use for the primary prevention of cardiovascular disease (CVD) and colorectal cancer in adults ages 50 to 59 years who have a 10% or greater 10-year CVD risk, are not at increased risk for bleeding, have a life expectancy of at least 10 years, and are willing to take low-dose aspirin daily for at least 10 years.”

If you’re younger than 50 or over 70 you’re on your own: the Force doesn’t recommend anything. And if you’re 60 to 69 the wording of their advice is wonderfully delicate: The decision to use low-dose aspirin to prevent CVD (cardiovascular disease) and colorectal cancer in adults ages 60 to 69 years who have a greater than 10% 10-year CVD risk should be an individual one.”

So that’s cleared that up …

Er, not quite. Various luminaries have been quick to demur. For example, Dr. Steven Nissen, the chairman of cardiology at the Cleveland Clinic has opined that the Task Force “has gotten it wrong.” In other words aspirin does more harm than good – though he might be a bit late as seemingly an astonishing 40% of Americans over the age of 50 take aspirin to prevent cardiovascular disease. I reckon that’s about 40 million people. Mmm … so that’s where the 40,000 tonnes goes (well, about one-fifth of it).

What’s the advice?

We’re more or less where we came in. I take an aspirin, or more usually a paracetamol, when I’ve got a stonking headache. Otherwise I wouldn’t take any kind of pill or supplement unless there is an overwhelming medical case for so doing. And pill-poppers out there might note the findings of Eva Saedder and her pals at Aarhus University that the single, strongest independent risk factor for drug-induced serious adverse events is the number of drugs that the patient is taking.

References

Rothwell, P. et al. (2012). Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials, Lancet DOI:1016/S0140-6736(11)61720-0

Rothwell P. et al. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trial, Lancet DOI:1016/S0140-6736(12)60209-8

Lancet editorial on Rothwell et al. 2011.

Algra, A. and Rothwell, P. (2012). Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials, Lancet Oncology DOI:10.1016/S1470-2045(12)70112-2.

Frouws M et al. Aspirin and gastro intestinal malignancies; improved survival not only in colorectal cancer? Conference abstract. European Cancer Congress 2015

Press release: Post diagnosis aspirin improves survival in all gastrointestinal cancers. The European Cancer Congress 2015. September 23 2015

Cuzick J, Thorat MA, Bosetti C, et al. Estimates of benefits and harms of prophylactic use of aspirin in the general population. Annals of Oncology. Published online August 5 2014

U.S. Preventive Services Task Force Draft Recommendation Statement: Aspirin to Prevent Cardiovascular Disease and Cancer

Saedder, E.A. et al. (2015). Number of drugs most frequently found to be independent risk factors for serious adverse reactions: a systematic literature review. British Journal of Clinical Pharmacology 80, 808–817.

 

Our Inner Self

Richard Gettner is the anti-hero of Christopher Fry’s wonderful play The Dark is Light Enough, set in the Austro-Hungarian war of 1848. Viewing himself as a failed author, failed husband and all-round disaster, he’s just absented himself from the Austrian Army on the basis of not being too nifty at soldiering either. Their minions are hot on his heels, intent on meting out the retribution that the military traditionally reserve for deserters, and he’s taken refuge in the family home of his former wife. In a tête á tête with her she rebukes him for his knack of self-destruction and points out that his book was actually quite well received and wasn’t really a failure. All Gettner’s frustration then bursts forth in a tirade of brutal philosphising:

‘Is there another

Word in the language so unnecessary

As ‘fail’ or ‘failure’?

No one has ever failed to fail in the end;

And for the very evident reason

That we’re made in no fit proportion

To the universal occasion; which, as all

Children, poets and myth-makers know,

Was made to be inhabited

By giants, fiends, and angels of such size

The whole volume of human generations

Could be cupped in their hands;

And very ludicrous it is to see us,

With no more than enough spirit to pray with,

If as much, swarming under gigantic

Stars and spaces.’

Fry deserves to be remembered as one of the great poetic wordsmiths of the English language, if only for The Dark is Light Enough but, had he known that nine out of ten cells in our bodies are bugs, he might have added a final blast to his demolition of the human condition:

Our failings should not surprise as we are but a sinister symbiosis,

More bacterial than human,

Helpfully poised such that when our hour is done

The microbial hordes surge forth to reduce us to our component parts.

bacteria and virus cartoon

The range of the hordes

Our rising preoccupation with the bug army (see it’s a small world & The Best Laid Plans In Mice and Men …) has been promoted by several recent studies that have propelled our ‘inner organism’ from the bowels of biology into the limelight. The story is somewhat fragmented but it’s a good time to see if we can make sense of the current threads.

We’ve known for many years that a motley collection of microorganisms are happy residents in most of our nooks and crannies, ranging from tummy buttons and through the skin, to saliva and our guts. They include bacteria and fungi, they’ve become known as the human microbiome (or microbiota), are said to outnumber human cells 10 to 1 and, all-told, can be viewed as a co-evolved ‘super-organism’ that has many benefits, including making our metabolism more efficient and hence improving nutrition. However, as with everything else in biology, this close relationship is a balancing act, the disturbance of which carries risks for disease development.

It’s critical to note that this vast microbial army, toiling away on our behalf in the dungeon of our innards, mostly dwelling in our gut, is a really mixed lot. It’s estimated to include about 700 different species of bacteria, of which perhaps thirty or forty species make up the bulk. It’s a bit like a mini Great Barrier Reef, well known as the world’s largest coral reef system and extraordinary in that, although it’s made up of billions of tiny organisms, the thing can behave in an integrated way, most dramatically illustrated by mass spawning.

Within the gut there are two major sub-families of microorganisms (Bacteroidetes (Bs) and Firmicutes (Fs)). Although more close-knit genetically speaking, each of these still includes many different classes of microbe. So, they’re a bit of a rabble but, by and large, not only are they harmless, they actually play a vital part in keeping us healthy.

Bacterial army manoeuvres

The power of DNA sequencing means that we can now interrogate our inner armies as to their make up under different conditions, because each type of microbe has a distinctive genome. The first thing to emerge is a dramatic shift in the balance between the major sub-families in obese individuals, be they mice or humans. That is, obese animals have about half the number of Bs and double that of Fs, compared to normal. And the link here is that the bug switch alters the pool of genes available, the upshot being increased energy harvest from nutrients consumed. In other words the switch helps animals get fatter.

It’s possible to breed mice that do not have any gut bugs and ask what happens when you transfer a colony from another animal. Bacteria-free mice on receipt of a normal gut army promptly double body fat: microbiota transferred from obese mice makes ’em twice as fat and, remarkably, human gut microbes from someone who’s obese also makes mice obese, if fed a high-fat rather than a normal diet.

Chemical warfare

Because we use antibiotics on a massive scale to control infections, we might ask whether they cause the good guys to suffer what the military call collateral damage – the point being that antibiotics don’t target bacteria on the basis of whether they’re good for us or potentially fatal. Inevitably, it turns out that ‘good guys’ do get hit by some antibiotics, and when this happens mice gain weight and build up fat. Unsurprisingly, a high-fat diet makes things worse. The sequence is that the drug changes the balance in microbiota before mice become obese and – a real shock – one course of antibiotic treatment imprints these effects on the animal permanently: it acts for life.

To clever for our own good

In our panic to avoid obesity and still pander to our sweet tooth, mankind has taken to using artificial sweeteners on a massive scale in the mistaken belief that these low-calorie agents do no harm. Only recently has this come to light as yet another example of the old adage about there being no such thing as a free lunch. It’s remarkable: saccharin, the most commonly used artificial sweetener, causes big shifts in the proportions of different types of gut bacteria – some increasing whilst others go down – the overall effect again being much more efficient energy harvesting from food. This is a direct effect of saccharin on the bugs, blocked by commonly used antibiotics.

The story so far

The regiments from which our foot soldiers are drawn (i.e. the species that form the microbiota) affect our metabolism and in particular can influence obesity – and that’s inextricably linked with type 2 diabetes and heart disease. With that in mind, it seems obvious that upsetting them with drugs is a risky business. What’s more, seemingly harmless food supplements can also be fraught with danger.

Marching to a beat

Yet another amazing feature of our inner army is that it keeps time. That is, the abundance of different sub-types fluctuates in synchrony with the day/night cycle. Put another way, it marches to a circadian rhythm along with many other physical, mental and behavioral changes that respond mainly to light – and hence roughly follow a 24-hour cycle. These can be big changes in composition: a particular type of bug can double in amount in 6 hours and return to its initial level by 6 hours later. One of the most familiar examples of the importance of biological rhythms comes from upsetting them by flying long distances on an east–west axis. Sure enough, mice have the same problem and, just like us, their clock is disturbed by jet lag (rather than shuttling them business class across the Atlantic you can simulate the effect simply by shifting the light-dark cycle under which they live forwards or backwards by 8 hours every three days). This largely blocks microbiota rhythmicity, the overall effect being to reduce the total number of bacteria. This in turn raises blood sugar level and the mice become obese. These events are absolutely dependent on what has happened to the microbiota because they are replicated in germ-free mice after transfer of jet-lagged faeces.

That’s more astonishing than might appear at first glance because it places the daily variation in gut bug populations alongside the basic circadian rhythms of the sleep-wake cycle, body temperature and other important functions. Circadian rhythms are driven by a ‘master clock’ in the brain that coordinates all the body clocks so that they are in synch. Four proteins are at the heart of the clock (CLOCK and BMAL1, highly expressed during the light phase, and cryptochromes (CRYs) and period proteins (PERs) expressed in the dark phase). These regulate the expression of many genes, thereby controlling the overall response (see Twenty More Winks). The implication is, therefore, that far from being a kind of add-on that occasionally gets upset, our microbiota play central role in a healthy body.

A recent example of it doing just that comes from another mouse model showing our ‘inner organism’ acting to protect against bacteria from the outside world. In response to infection, cells that line the small intestine switch on the production of a particular sugar (fucose): that is then released from the cells and consumed by members of the microbiota – this novel energy source seemingly helping the host to survive the onslaught of infectious microorganisms.

And finally …

All this stuff about germs being our best friends is riveting but what about the important question? Well, there appears to be a complex interaction between diet, microbial metabolism and colorectal cancer, with bacteria able to make some agents that protect against cancer and some others that drive carcinogenesis. There’s evidence that a wide range of tumours can be promoted by transferring microbiota to germ-free mice and, on the other hand, that depleting intestinal bacteria reduces the development of liver and colon cancers.

Space invaders

Personal space is, apparently, a big thing for many of us these days. So big that ‘scientists’ have had a go at measuring it – they never miss an opportunity do they? Actually, boffins being boffins, they measured something called the defensive peripersonal space (DPPS) – a ‘vital safety margin surrounding the body’ – by sticking a pair of electrodes to the wrists of volunteers who held their hands different distances from their faces whilst receiving bursts of current through the electrodes. That made them blink (!) and the nearer the hand to the face the more they blinked, as the shock was perceived to be a greater threat to their face. There is, seemingly, a sharp boundary: up to somewhere between 20 cm and 40 cm is a high-risk area where we get very aerated: beyond that we don’t much care – with large personal variations depending on how twitchy you are. Debrett’s, which styles itself as the arbiter of society etiquette, has a simpler test, its distilled wisdom revealing that if you can feel the warmth of someone’s anxious breath upon your face, then you’re standing too close.

With all this neurosis it’s probably a good job no one mentioned our inner army: a ten-to-one cellular takeover (albeit that bugs are much smaller) is not so much a bit of heavy breathing as a blitzkrieg. Even so, it’s a delicately poised occupation upon which we depend for survival – and it’s one that we disturb at our peril.

References

Sambo, C.F. and Iannetti, G.D. (2013). Better Safe Than Sorry? The Safety Margin Surrounding the Body Is Increased by Anxiety. The Journal of Neuroscience 33, 14225-14230; doi: 10.1523/JNEUROSCI.0706-13.2013.

The Long and Short of Life

Many years ago (in 1928 to be precise) one of the cleverest of all scientists, J.B.S.Haldane, wrote an essay that became famous for explaining why there is a best size for every animal. In On Being the Right Size he pointed out that the giants who beset the hero of The Pilgrim’s Progress had a problem, unmentioned by John Bunyan, in being not only ten times the height of ordinary man but ten times as wide and ten times as thick. They were therefore one thousand times heavier and, as the human thigh-bone fractures under about ten times our normal weight, the giants would have broken a leg at every step.

Going in the other direction, so to speak, JBS noted that insects don’t have oxygen-carrying bloodstreams because what little oxygen their cells require can be absorbed by simple diffusion of air through their bodies. That’s because gases can diffuse easily through very small distances but are slow to spread further afield – meaning that regions of an insect more than a quarter of an inch from the air would always be short of oxygen. In consequence hardly any insects are much more than half an inch thick and we can relax, safe in the knowledge that the giant, man-eating spiders beloved of science fiction are indeed the stuff of fantasy.

Solving the problem

Larger animals have to take a radical approach to the problem of supplies – Bunyan’s giants needed a thousand times as much food and oxygen as ordinary man and their levels of waste production don’t bear thinking about – the point being that bigger creatures, even if not giants, required the evolution of oxygen-carrying bloodstreams and pumping systems to reach all their cells.

Ostrich racing

Ostrich racing

So successful has this ploy been that, from the emergence of the first fish and amphibians 500 million years ago, we have 64,000 vertebrate species today. Their range is truly astonishing – from tiny frogs less than half an inch long found in Papua New Guinea to the blue whale, averaging 110 tonnes and 24 metres in length and thought to be the largest animal of all time. The African bush elephant is the largest land animal (about 5 tonnes) and birds can get up to 150 kg if they give up flying. At that size ostriches are big enough to race each other whilst mounted by humans. It’s difficult to say whether the birds would rather be flying but if they fancy a bit of reverse evolution they’re going to need to lose 90% of their weight. The fact that only by limiting themselves to about 15 kg can birds manage to get airborne is one indicator of the energy required for flight. Three at this edge of evolution are the Andean condor, the wandering albatross and various bustards, each needing a wingspan of around three metres to generate the lift required to get something like 15 kg into the air.

The point about all these wonderful creatures is that they’ve evolved to survive in very specific niches where they live life on a knife-edge. Recall the Manchurian Great bustard who put on a bit of weight and seemingly lost the capacity to fly: his wing muscles couldn’t generate enough lift to get his 21 kg airborne. Or hummingbirds some of which can manage thousands of wing beats per minute but are constantly on the verge of starvation because they need to drink more than their own weight in nectar each day to generate the energy they use.

Top of the class

One of these marvellous vertebrate species is, of course, us – Homo sapiens – and we’ve been diligently carving out our niche for the past 200,000 years. Allegedly because of our larger brains, we’ve been more successful than any other species and managed to colonise pretty well every corner of all seven continents. That shows amazing adaptability for one species – a bunch of animals that are, to a first approximation, genetically identical. Ah! What a splendid word approximation is. We are indeed 99.9% identical in the genetic code – the sequence of bases in our DNA – that makes us. But we all know, of course, that we are not identical. We’re so not identical that everyone is almost instantly distinguishable from the other seven billion souls elbowing each other for living space on the planet. Two of our most obvious features are skin colour, variations in which have helped us make our homes in hot and cold climates alike, and height. The height range for adults is quite remarkable – from 2 ft (under 60 centimetres) to 8 ft 6 in (over 260 cms) – although exceptional height variation (20% deviation from the average) within a population is sometimes due to medical conditions. Mention of populations raises another familiar point: average heights vary significantly between human populations. Thus for males in the UK and the USA it is 5 ft 10 inches, in Vietnam and Bolivia it’s 5 ft 5, in Japan 5 ft 7 and those Scandinavian chappies clock in at 5 ft 11 inches. Our northern relatives are an example of the rule named after the nineteenth-century German biologist Carl Bergmann who noted that for closely related populations within a species those of larger size are found in colder environments, whilst the smaller guys stick to warmer regions.

What makes humans differ in height?

Nearly identical though we are, the answer has to lie in our genetic material or, more precisely, in the sequence of bases (A, C, G and T) that make up DNA. The difference lies in the detail: in the one in a thousand of the three thousand million bases that make up our genomes that differ between you and me (see Policing DNA). Known as common genetic variants, these inherited differences are what make us unique. The advent of high-powered DNA sequencing methods in the last 10 years means we can now screen large numbers of genomes to pin down the variants that associate with diseases and traits. Several such studies have focused on height and the most recent has sequenced DNA from more than 250,000 people and found nearly 700 variants that account for about 20% of the hereditability of height.

That says there’s still more to be discovered but the basic message is that a very large but finite number of variants, i.e. several thousand sequence differences, each by itself insignificant, contribute an overall effect – how tall you are – even though other factors, notably childhood nutrition, can play a role. Although the DNA variants are scattered throughout the genome, it seems likely that their effects are concentrated on specific pathways involved in cell proliferation and skeletal development.

Why are we interested in height?

In A Taxing Inheritance we tried to explain that, although cancers are mostly driven by the accumulation of mutations, i.e. changes in DNA that alter the activity of proteins and accumulate throughout life, about one in ten are given a kind of flying start when a mutation occurs before birth – i.e. they occur in an egg or sperm cell or just after fertilization. However, the number of such mutations that have been discovered accounts for only about a quarter of inherited breast cancers. The rest get their initial impetus from common genetic variants, in a way that closely parallels the regulation of height by a sub-set of variants. That is, differences at single positions within the genetic code – on their own insignificant – can, in combination, produce a significant effect. When the effect is an increased risk of cancer it may take many years to show itself whereas the impact on height becomes apparent early in development.

A good question

Having used height as an example of common genetic variants in action, one might ask the rather obvious question of whether there is any link between height and cancer and indeed several studies have shown that there is. In a large group of postmenopausal women (over 20,000) height was positively associated with risk of all cancers, every four inch change in height giving a 13 percent increase in risk. Another study concluded that tall men have slightly higher risk for aggressive prostate cancer.

Keep calm!

So there’s a link between being tall and cancer – but don’t panic! Like a good few other things in life, there’s nothing you can do about it. Bear in mind that, cancer apart, tallness, particularly in men, may be a boon and not just when you’re trying to watch footy. There’s evidence that shorter adults (below 160.5cm / 5ft 3in) are about 50% more likely to have a heart attack or die from heart disease than tall people.

Finally, this piece is to make the point that there isn’t a ‘height gene’ – just a large number of permutations in the variable bits of our genomes that determine how lofty we become. Similar permutations also determine most of the risk of inheriting breast cancer but we can’t do anything about that either. So the long and short of it is love the science – and love your size!

References

Wood, A.R. et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics 46, 1173–1186.

Kabat, G.C. et al. (2013). Adult Stature and Risk of Cancer at Different Anatomic Sites in a Cohort of Postmenopausal Women. Cancer Epidemiol Biomarkers Prev., 22, 1–11.

Zuccolo, L. et al. (2008). Height and Prostate Cancer Risk: A Large Nested Case-Control Study (ProtecT) and Meta-analysis. Cancer Epidemiol Biomarkers Prev., 17, 2325–2336.

Cairns, B.J. and Green, J. (2013). Good News for “Alice”: Height and Sex Differences in Cancer Risk. J Natl Cancer Inst djt127 doi: 10.1093/jnci/djt127

A Small Helping For Australia

There’s an awful lot of very good things in Australia. Australians for a start. They’re just so kind, open, welcoming and accommodating it makes touring round this vast land a joy. Not merely do they cheerfully find a way to fix anything you want but they’re so polite that no one’s drawn attention to my resemblance to a scientific version of those reconstructed geriatric pop groups (viz the Rolling Stones or whatever) staggering round the place on their Zimmer frames. And they say wonderful things about my talks – that’s how charming they are!!

Greater bilgy

Greater bilby

Of course, you could say of Australia what someone once said of America and Britain: two nations divided by a common language. In the case of Oz you could also add ‘and by a ferociously competitive obsession with sport.’ So it’s wonderfully not home. Even Easter’s different in that here you get chocolate Easter bilbies rather than rabbits. Bilbies, by the way, are a sort of marsupial desert rat related to bandicoots. The lesser version died out in the 1950s so only the greater bilby is left (up to 20 inches long + tail half as long again) and you have to go to the arid deserts to find those. Not the choccy versions obviously: they don’t do too well in the deserts but they’re all over Melbourne:

Easter bilby

Easter bilby

shops full of ’em – and a lot bigger than the real thing. So, together with the egg avalanche, there’s no limit to the number of calories you can consume in celebrating the resurrection of Christ. Coupled with the glorious fact that there’s scarcely any mention of wretched soccer, all these novelties mean you’re never going to be lulled into thinking you’re still in dear old Blighty (or back in the old country as they delightfully put it here).

Hors D’Oeuvres

Even so there are some marked similarities to make you feel at home. One of the least striking is that most people are overweight. That is, I scarcely notice it, coming from what I regard as the global fat capital, i.e. Cambridge. The stats say that that’s not true, of course. The USA does these things better than the UK. Of course it does. But there’s not much in it. More than two-thirds of American adults are overweight and one person in three is obese. For the UK the prediction is that one in three will be obese by 2020. Currently in Australia 63% of the adult population is overweight, a figure that includes 28% who are obese.

The essential point is that there’s stuff all difference between those countries and the really critical thing is that the rates go on soaring. In the U.S. between 1980 and 2000 obesity rates doubled among adults and since 1980 the number of overweight adolescents has tripled. By 2025 one Australian child in three will be in the overweight/obese category.

Main course

The meat in this piece is provided by a report written by a bunch of Australian heavyweights – all Profs from Sydney or wherever. It has the droll title ‘No Time To Weight’ – do I need to explain that or shall I merely apologise for the syntax? ‘Oh c’mon!’ I hear our Aussie readers protest. ‘We’re going to hell in a handcart and you’re wittering about grammar. Typical b***** academic.’ Quite so. Priorities and all that. So the boffins’ idea is to wake everyone up to obesity and get policy-makers and parliamentarians to do something effective.No Time to Weight report

Why is this so important? Probably unnecessary to explain but obesity causes a variety of disorders (diabetes, heart disease, age-related degenerative disease, sleep apnea, gallstones, etc.) but in particular it’s linked to a range of cancers. Avid followers of this BbN blog will recall obesity cropping up umpteen times already in our cancer-themed story (Rasher Than I Thought?/Biting the bitter bullet/Wake up at the back/Twenty winks/Obesity and Cancer/Isn’t Science Wonderful? Obesity Talks to Cancer) and that’s because it significantly promotes cancers of the bowel, kidney, liver, esophagus, pancreas, endometrium, gallbladder, ovaries and breast. The estimate is that if we all had a body mass index (BMI) of less than 25 (the overweight threshold) there would be 12,000 fewer UK cancers per year. Mostly the evidence is of the smoking gun variety: overweight/obese people get these cancers a lot more often than lesser folk but in Obesity Talks to Cancer we looked at recent evidence of a molecular link between obesity and breast cancer.

Entrée (à la French cuisine not North American as in Main course)

Or, as you might say, a side dish of genetics. The obvious question about obesity is ‘What causes it?’ The answer is both complicated and simple. The complexity comes from the gradual accumulation of evidence that there is a substantial genetic (i.e. inherited) component. Many people will have heard of the hormone leptin, a critical regulator of energy balance and therefore of body weight. Mutations in the leptin gene that reduce the level of the hormone cause a constant desire to eat with the predictable consequence. But only a very small number of families have been found who carry leptin mutations and, although other mutations can drive carriers to overeating, they are even rarer.

However, aside from mutations, everyone’s DNA is subtly different (see Policing DNA) – about 1 in every 1000 of the units (bases) that make up our genetic code differs between individuals. All told the guess is that in  90% of the population this type of genetic variation can contribute to their being overweight/obese.

Things are made more complicated by the fact that diet can cause changes in the DNA of pregnant mothers (what’s called an epigenetic effect). In short, if a pregnant woman is obese, diabetic, or consumes too many calories, the obesity trait is passed to her offspring. This DNA ‘imprinting’ activates hormone signaling to increase hunger and inhibit satiety, thereby passing the problem on to the child.Preg Ob

So the genetics is quite complex. But what is simple is the fact that since 1985 the proportion of obese Australians has gone up by over 10-fold. That’s not due to genes misbehaving. As David Katz, the director of Yale University’s Prevention Research Center puts it: ‘What has changed while obesity has gone from rare to pandemic is not within, but all around us. We are drowning in calories engineered to be irresistible.’

Desserts

We might hope that everyone gets theirs but for obesity that’s not the way it works. The boffos’ report estimates that in 2008 obesity and all its works cost Australia a staggering $58.2 billion. Which means, of course, that every man, woman and child is paying a small fortune as the epidemic continues on its unchecked way. The report talks formulaically of promoting ‘Australia-wide action to harmonise and complement efforts in prevention’ and of supporting treatment. It’s also keen that Australia should follow the American Medical Association’s 2013 decision to class obesity as a disease, the idea being that this will help ‘reduce the stigma associated with obesity i.e. that it is not purely a lifestyle choice as a result of eating habits or levels of physical activity.’ Unfortunately this very p.c. stance ignores that fact that obesity is very largely the result of eating habits coupled to levels of physical activity. The best way to lose weight is to eat less, eat more wisely and exercise more.

In 2008 Australian government sources forked out $932.7 million over 9 years for preventative health initiatives, including obesity. This latest report represents another effort in this drive. Everyone should read it but, clear and well written though it is, it looks like a government report, runs to 34 pages and almost no one will give it the time of day.

The problem is that in Australia, as in the UK and the USA, all the well-intentioned propaganda simply isn’t working. As with tobacco, car seat belts and alcohol driving limits, the only solution is legislation, vastly unpopular though that always is – until most folk see sense. Start with the two most obvious targets: ban the sale of foods with excessive sugar levels (especially soft drinks) and make everyone have a BMI measurement at regular intervals, say biannually. Then fine anyone over 25 in successive tests who isn’t receiving some sort of medical treatment.

Amuse bouche

I know: I’ll never get in on that manifesto. But two cheers for ‘No Time To Weight’ and I trust the luminaries who complied it appreciate my puny helping hand from Cambridge. In the meantime, not anticipating any progress on a national front, I’m going to start my own campaign – it’s going to be a bit labour-intensive, one target at a time, but here goes!

The other evening I had dinner in a splendid Italian restaurant (The Yak in Melbourne: very good!). And delightful it would have been had I not shared with two local girls at the next table. One was your archetypal tall, slender, blonde, 25-ish Aussie female – the sort you almost feel could do with a square meal. Her companion of similar age was one of the dirigible models. (You’ll understand I wasn’t looking at them at all: I was with my life’s companion so no chance of that – but I do have very good peripheral vision. Comes from playing a lot of rugby). Each had one of the splendid pasta dishes on offer – but, bizarrely, they also ordered a very large bowl of chips. No prizes for guessing who ate all the fries. Miss Slim didn’t have one – not a single one! (OK, by now I was counting). Her outsize friend had the lot. How could she do that with a shining example of gastronomic sanity sitting opposite?

So c’mon Miss Aussie Airship: you know who you are. Let’s have no more of it. Obesity is not a personal ‘issue.’ Regardless of your calorie intake in one meal, your disgraceful behavior ruined a delightful dining experience for me, and quite possibly several other folk within eyeshot, upset the charming waitress and insulted The Yak’s excellent chef. Just think in future: there’s a place in life for chips – but it’s not with everything.

Reference

“Obesity: A National Epidemic and its Impact on Australia”

Twenty winks

Not now obviously but after you’ve read the first episode of this absorbing tale you may feel a nap is in order, despite the fact that in Wake up at the back we noted that snoring can give you cancer.

Setting aside that hazard, the general finding is that most people require seven or eight hours of sleep to function optimally. Fall short of that, to less than six hours even for one night, and we all know that the consequences may include a degree of grumpiness helped along by a tendency to clumsiness and generally heightened incompetence. If you happen to suffer from hypertension you could measure another result because your blood pressure will be even higher than usual for the rest of the day. However, these are all reversible states, so that real problems only come with more extended sleep deprivation and there is much evidence that this can profoundly affect memory, creativity and emotional stability, as well as leading to heart disease, diabetes and obesity. The molecular drive for the latter is that folk who are short of sleep have lower levels of the hormone leptin (which tells the brain you’ve had enough to eat) but higher levels of ghrelin (appetite stimulant). One week of only four hours nightly kip converts healthy young men to pre-diabetics in terms of their insulin and blood sugar levels.

The cancer link

To all of which must be added the dribble of reports over many years that disrupted sleep patterns, such as result from shift-work, may increase the risk of a variety of cancers (these include breast, prostate, bowel and endometrial cancers and also non-Hodgkin’s lymphoma). The effects are moderate (that is, the risk rise is small – typically up to 20%), making these findings suggestive rather than conclusive, although they are bolstered by a considerable number of studies on animals. So sleep, or rather lack of it, is yet another of these things that seems to affect cancer but for which really hard evidence is lacking. It’s not a9f5f190difficult to see why. You can’t put a number on ‘a good night’s sleep’ (though you can now get phone apps that record your every snort and contortion) nor do we understand the biological consequences of sleep disruption, and then there are the perpetual problems that everyone’s different and cancers take years to show themselves. However, you can put a figure on how you feel about sleep: our friends at the wonderful Karolinska Institute in Stockholm have come up with a Sleepiness Scale (1 = very alert, 9 = very sleepy, great effort to keep awake) – which could replace the traditional grunt when asked ‘How are you?’ ‘Oh, much as usual, about eight on the Karolinska Scale.’

Sleeping Off Breast Cancer

Trawling the literature it seems that the majority of cancer/sleep studies focus on the breast and a word about two of the most recent will suffice to paint the picture. In a large group of Japanese ladies over the age of 40 those who said they slept for less than six hours were markedly more likely to develop breast cancer than those who slept longer. Over nine hours a night (sleep that is) even appeared to give a degree of protection.

The main culprit for the breast cancer/sleep link is shift work, illustrated by the Danish military where women working night-shifts are more prone to breast cancer than those with normal sleep patterns and there is an upward trend in risk with years of night-shift work.

An association with ovarian cancer has also been reported although, somewhat perplexingly, that study didn’t show that the risk got bigger the longer night-shifts were worked. This rather confusing picture may reflect individual variation. As we all know, some folk are ‘larks’ – up at the crack of dawn – my lady wife is one – whereas others are ‘owls’ who perform better the later it is (no prize for guessing what kind of bird I am – bit of domestic incompatibility there!). It may be that ‘owls’ suffer less from night-shift perturbation and they may therefore be more likely to opt for that mode of work – and indeed the Danish study found that ‘larks’ on night-shifts were more likely to get breast cancer. As if that’s not enough, irregular shift patterns make it more difficult for women to conceive and working only nights increases the chances of miscarrying.

Similar results have been found for other cancers, notably of the bowel – 50% more likely to occur in those who sleep an average of less than six hours a night than those who zzzz for over seven. Put another way, the less than six hours risk is about the same as having a first degree relative with the disease or eating lots of red meat – and similar to that for breast cancer.

Mu Treadmill

th-2

th-1

Mice Sleep Too

It’s not a bad idea to keep in mind that we are very similar to mice – we’ve got more or less the same number of genes and exercising (on a treadmill for example) helps to keep at least some cancers at bay. Another similarity is that sleep deprivation upsets the works so that, for example, in models of colon cancer it reverses the beneficial effects of moderate exercise.

So insomnia is no laughing matter, however it comes about, and next time we’ll put two and two together by looking at the molecular story – after which you really may need forty winks.

 References

Kakizaki, M. et al. (2008).  Sleep duration and the risk of breast cancer: the Ohsaki Cohort Study. Br J Cancer  99, 1502–1505.

Hansen, J. and Lassen, C.F. (2012). Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup Environ Med., 69, 551–556.

Bhatti, P. et al. (2012). Nightshift work and risk of ovarian cancer. Occup Environ Med., 0:1–7. doi:10.1136/oemed-2012-101146.

Thompson, C.L. et al. (2011). Short Duration of Sleep Increases Risk of Colorectal Adenoma. Cancer 117, 841–847.

Zielinski, M.R. et al. (2012). Influence of chronic moderate sleep restriction and exercise on inflammation and carcinogenesis in mice. Brain, Behavior, and Immunity 26, 672–679.

Wake up at the back

Living with someone of the opposite sex, or getting married as it used to be known, is an interesting experience. One of the things you rapidly discover that your Mum never warned you about is that women are a distinct species.  You missed that revelation in your biology classes? Serves you right for snoozing on the back row but, as a recap of the evidence, consider the following. Species often show major differences in sensory perception – thus our cat is much better than I am at seeing in the dark, though he misses out a bit in daylight as cats don’t have colour vision. When it comes to hearing it’s a bit the other way round: most of the time you can shout at him til you’re hoarse with absolutely no effect – but one faint clink of a food bowl at the back door and, yet again, he’ll set a new Feline Fifty metres Steeplechase record from the front garden. And dogs, as is well known, hear frequencies way beyond what we can pick up.

Not in my lectures!!

The gentle sex has similarly evolved beyond what mere man can manage. Take colour, for example, at which men are, as we’ve noted, quite good – compared to cats. But, as you discover the first time you are taken ‘clothes shopping’ by your wife, other half, inamorata, partner, mistress or whatever, women have evolved far beyond merely spotting that blue is different from red and being able to recite Richard Of York (to remind themselves of the rainbow sequence). They see ‘combinations’ – so you are curtly informed that what has taken your fancy ‘just doesn’t go together’ in the sort of voice that adds ‘any nitwit can see that’ without the need to expend breath on the last seven syllables.

They’re at a similarly lofty level of evolution when it comes to sound. My lady wife avers that I snore – all the time (when asleep, that is) and very loudly. So much so that she tends to use a bed at the opposite end of the house for sleeping and only ventures within sonar range for other purposes. I’d always explained this behaviour as a manifestation of the amazing imagination possessed of the female that us boys are, of course, completely lacking. However, I’ve now come to appreciate that, like Fido (who sleeps in the kitchen), she simply has exquisitely sensitive aural apparatus. So maybe I do snore – but only very quietly or at ultra high frequency, so that I would be undetectable at rest to my own species and only my beloved and the dog would know what was going on (oh, and the cat because he can see the heaving chest).

Which is very reassuring since some fellows at the Universities of Wisconsin and Barcelona have got together to discover that snoring makes you nearly five times more likely to develop cancer. Strictly the problem is sleep disordered breathing (SDB) – which happens when there’s some kind of blockage of the upper airway and, apart from disrupting sleep, it can make you snore. Of course, there’s evidence that sleep disruption can contribute to all sorts of problems from heart disease to car crashes but this is the first study making a link to cancer.

No problem for me (discounting the wife’s super sonar) but should real, habitual snorers panic? Please don’t for most of the usual reservations to this type of study apply – relatively small numbers (1522) for example. The volunteers came from an alluringly named body of men and women called the Wisconsin Sleep Cohort, set up in 1988 for prospective studies of sleep disorders. In fact the interesting ones here are what we might call the Winsomniacs – the 365 of the Cohort who can’t do it rather than the majority of Badger State dreamers. Split in this case into sub-groups of SDB severity – the strongest association being with the most severe SDB. Although the authors did their best to allow for other factors (obesity – a common cause of SDB – diabetes, smoking, etc.) it’s almost impossible in this type of study to eliminate everything bar the one factor you’re focussing on.

The most frequent linked cancer was of the lung, followed by bowel, ovary, endometrial, brain, breast, bladder, and liver. And the cancer risk was up to four-fold greater for the worst afflicted.

Do the boffins have any helpful suggestions? Not really. Those unlucky enough to be severely affected can try a gadget called a continuous positive airway pressure device but, for the rest, console yourselves that the risk is small and the data so far are very preliminary. Put another way, you have more important things to think about – like finding a partner (preferably with sub-standard sonar detection capability) who loves you so much they’re willing to poke you in the ribs whenever you become aurally intrusive.

References

http://www.telegraph.co.uk/health/healthnews/9278214/Snoring-can-raise-cancer-risk-five-fold.html

Javier Nieto, F.J. et al. (2012). Sleep-disordered Breathing and Cancer Mortality: Results from the Wisconsin Sleep Cohort Study. American Journal of Respiratory and Critical Care Medicine 186, Iss. 2, pp 190–194.

Touching base with our rellos

Those who are not regular readers of Nature (no, not on the top shelf at your newsagents – the world’s leading science journal) may have missed the fact that, as of March, we have a pretty complete DNA sequence of the gorilla genome – to be precise, of a female western lowland gorilla named Kamilah. ‘Why?’ one or two might ask. The mountaineer George Mallory famously wanted to climb Mount Everest ‘because it’s there’. Had he been a scientist he’d have said ‘because we can’, for science is the art of the possible. The limit to advance at any time is what can be done with the available tools. One or two headstrong souls tried blood transfusions – with disastrous results – before we knew how to detect substances on the surface of red cells that define blood groups. Finding the order of bases in DNA had to wait for Fred Sanger’s insight but that has led over the last 20 years to one of the most incredible technical bursts in the history of science. When the project to sequence human DNA got going the cost estimate was $1 per base: the current figure is one millionth of that whilst the speed at which it can be done has gone up by 10 million!!

So the gorilla’s a bargain and the comforting news revealed in its DNA is that chimpanzees are still our nearest relatives: we separated from them, so to speak, 3.7 million years ago but we have to go back to nearly 6 million years to find gorillas going their own way. We’re an evolutionary happy family then, and I’m certainly happy because my ‘other half’ is one of the authors of the gorilla paper. But what has she and her pals unearthed that’s really new?

Two things – well, maybe one and a half at the moment. The first is a side-light on the complexity of evolution. It has indeed turned out that for 70% of the genome gorillas are more distant from us than chimps. Remarkably, the remaining 30% of the gorilla sequence is closer to either human or chimpanzee sequences than these two are to each other. One way this could happen is if there were two variants of an ancestral gene (A & B), either or both that could be transmitted to descendants. Suppose that species divergence occurs to give AA and AB, and subsequently AB separates again to give two species AA or BB. The AA sequence will now be closer to that of the species that diverged two branch points ago than it will be to BB, the result of the most recent speciation.

That’s a quite interesting quirk of molecular biology. But what about the half thing? That’s data that may be useful – but not yet. Every year nearly one million people die from malaria. We get it when mosquitoes inject us with a microorganism called Plasmodium – and so do chimpanzees and western lowland gorillas. Indeed it seems that the strain of the bug that does the damage first arose in Kamilah’s ancestors and since then the mossies have seen to it that the rest of us suffer too – well, almost all of us – because eastern lowland gorillas don’t get malaria. As their name suggests, they’re close relatives of Kamilah: the western branch lives in Central West African countries whilst eastern lowland gorillas prefer the Democratic Republic of the Congo. And we know they’re closely related because the Nature paper sequenced both and showed that the species diverged a bit less than two million years ago. So the key question is: when the detailed sequences are compared will any clues to malaria immunity be revealed? That will take a bit of time and it won’t fix malaria – but it may be one more small step towards being able to control a disease that kills more people than any other bar tuberculosis, AIDS, heart disease and, of course, cancer.

Fancy that?

Seeing as they started 28 years ago we can hardly blame members of the Harvard School of Public Health for publishing the results of their labours in tracking 120,000 people, asking them every few years what they’ve eaten and seeing what happened to them (a ‘prospective’ study). About one in five of the subjects died while this was going on but the message to emerge was that eating red meat contributes to cardiovascular disease, cancer and diabetes. The diabetes is non-insulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes – about 90% of diabetes cases. The cancers weren’t specified, although the evidence for a dietary link is generally strongest for colon carcinoma. The risk is a little higher for processed red meat than unprocessed.

How much?

Massive, if you mean the amount of data they accumulated from such a huge sample size followed over many years. If you mean on a plate, their standard serving size was 85 grams (3 ounces) for unprocessed beef, pork or lamb) and 2 slices of bacon or a hot dog for processed red meat. One of those a day and your risk of dying from heart disease is increased by about 20 per cent and from cancer by about 10 per cent – and the risks are similar for men and women. Just to be clear, that is a daily consumption – and the authors very honestly acknowledge that ‘measurement errors inherent in dietary assessments were inevitable’. They also mentioned that one or two things other than steak can contribute to our demise.

Are we any wiser?

If you recall from Rasher Than I Thought? the risk of pancreatic cancer is increased by just under 20 per cent if you eat 50 grams of processed meat every day. This report suggests that a limit of 1.5 ounces (42 grams) a day of red meat (one large steak a week) could prevent around one in 10 early deaths. So does it tell us anything new? Not really. Was it worth doing? Yes, because it adds more solid data to that summarized in Are You Ready To Order?

And the message?

Unchanged. Do some exercise and eat a balanced diet – just in case you’ve forgotten, that means limit the amount of red meat (try fish, poultry, etc.), stick with the ‘good carbs’ (vegetables, fruits, whole grains, etc.), cut out the ‘bad’ (sugar – see Biting the Bitter Bullet), eat fishy fats not sat. fats and, to end on a technical note, don’t pig out.

 References

Pan A, Sun Q, Bernstein AM; et al. Red meat consumption and mortality: results from 2 prospective cohort studies [published online March 12, 2012]. Arch Intern Med. doi:10.1001/archinternmed.2011.2287.

Pan A, Sun Q, Bernstein AM; et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088-1096.