Fantastic stuff

 

It certainly is for Judy Perkins, a lady from Florida, who is the subject of a research paper published last week in the journal Nature Medicine by Nikolaos Zacharakis, Steven Rosenberg and their colleagues at the National Cancer Institute in Bethesda, Maryland. Having reached a point where she was enduring pain and facing death from metastatic breast cancer, the paper notes that she has undergone “complete durable regression … now ongoing for over 22 months.”  Wow! Hard to even begin to imagine how she must feel — or, for that matter, the team that engineered this outcome.

How was it done?

Well, it’s a very good example of what I do tend to go on about in these pages — namely that science is almost never about ‘ground-breaking breakthroughs’ or ‘Eureka’ moments. It creeps along in tiny steps, sideways, backwards and sometimes even forwards.

You may recall that in Self Help – Part 2, talking about ‘personalized medicine’, we described how in one version of cancer immunotherapy a sample of a patient’s white blood cells (T lymphocytes) is grown in the lab. This is a way of either getting more immune cells that can target the patient’s tumour or of being able to modify the cells by genetic engineering. One approach is to engineer cells to make receptors on their surface that target them to the tumour cell surface. Put these cells back into the patient and, with luck, you get better tumour cell killing.

An extra step (Gosh! Wonderful GOSH) enabled novel genes to be engineered into the white cells.

The Shape of Things to Come? took a further small step when DNA sequencing was used to identify mutations that gave rise to new proteins in tumour cells (called tumour-associated antigens or ‘neoantigens’ — molecular flags on the cell surface that can provoke an immune response – i.e., the host makes antibody proteins that react with (stick to) the antigens). Charlie Swanton and his colleagues from University College London and Cancer Research UK used this method for two samples of lung cancer, growing them in the lab to expand the population and testing how good these tumour-infiltrating cells were at recognizing the abnormal proteins (neo-antigens) on cancer cells.

Now Zacharakis & Friends followed this lead: they sequenced DNA from the tumour tissue to pinpoint the main mutations and screened the immune cells they’d grown in the lab to find which sub-populations were best at attacking the tumour cells. Expand those cells, infuse into the patient and keep your fingers crossed.

Adoptive cell transfer. This is the scheme from Self Help – Part 2 with the extra step (A) of sequencing the breast tumour. Four mutant proteins were found and tumour-infiltrating lymphocytes reactive against these mutant versions were identified, expanded in culture and infused into the patient.

 

What’s next?

The last step with the fingers was important because there’s almost always an element of luck in these things. For example, a patient may not make enough T lymphocytes to obtain an effective inoculum. But, regardless of the limitations, it’s what scientists call ‘proof-of-principle’. If it works once it’ll work again. It’s just a matter of slogging away at the fine details.

For Judy Perkins, of course, it’s about getting on with a life she’d prepared to leave — and perhaps, once in while, glancing in awe at a Nature Medicine paper that does not mention her by name but secures her own little niche in the history of cancer therapy.

References

McGranahan et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 10.1126/science.aaf490 (2016).

Zacharakis, N. et al. (2018). Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nature Medicine 04 June 2018.

Advertisements

Lorenzo’s Oil for Nervous Breakdowns

 

A Happy New Year to all our readers – and indeed to anyone who isn’t a member of that merry band!

What better way to start than with a salute to the miracles of modern science by talking about how the lives of a group of young boys have been saved by one such miracle.

However, as is almost always the way in science, this miraculous moment is merely the latest step in a long journey. In retracing those steps we first meet a wonderful Belgian – so, when ‘name a famous Belgian’ comes up in your next pub quiz, you can triumphantly produce him as a variant on dear old Eddy Merckx (of bicycle fame) and César Franck (albeit born before Belgium was invented). As it happened, our star was born in Thames Ditton (in 1917: his parents were among the one quarter of a million Belgians who fled to Britain at the beginning of the First World War) but he grew up in Antwerp and the start of World War II found him on the point of becoming qualified as a doctor at the Catholic University of Leuven. Nonetheless, he joined the Belgian Army, was captured by the Germans, escaped, helped by his language skills, and completed his medical degree.

Not entirely down to luck

This set him off on a long scientific career in which he worked in major institutes in both Europe and America. He began by studying insulin (he was the first to suggest that insulin lowered blood sugar levels by prompting the liver to take up glucose), which led him to the wider problems of how cells are organized to carry out the myriad tasks of molecular breaking and making that keep us alive.

The notion of the cell as a kind of sac with an outer membrane that protects the inside from the world dates from Robert Hooke’s efforts with a microscope in the 1660s. By the end of the nineteenth century it had become clear that there were cells-within-cells: sub-compartments, also enclosed by membranes, where special events took place. Notably these included the nucleus (containing DNA of course) and mitochondria (sites of cellular respiration where the final stages of nutrient breakdown occurs and the energy released is transformed into adenosine triphosphate (ATP) with the consumption of oxygen).

In the light of that history it might seem a bit surprising that two more sub-compartments (‘organelles’) remained hidden until the 1950s. However, if you’re thinking that such a delay could only be down to boffins taking massive coffee breaks and long vacations, you’ve never tried purifying cell components and getting them to work in test-tubes. It’s a process called ‘cell fractionation’ and, even with today’s methods, it’s a nightmare (sub-text: if you have to do it, give it to a Ph.D. student!).

By this point our famous Belgian had gathered a research group around him and they were trying to dissect how insulin worked in liver cells. To this end they (the Ph.D. students?!) were using cell fractionation and measuring the activity of an enzyme called acid phosphatase. Finding a very low level of activity one Friday afternoon, they stuck the samples in the fridge and went home. A few days later some dedicated soul pulled them out and re-measured the activity discovering, doubtless to their amazement, that it was now much higher!

In science you get odd results all the time – the thing is: can you repeat them? In this case they found the effect to be absolutely reproducible. Leave the samples a few days and you get more activity. Explanation: most of the enzyme they were measuring was contained within a membrane-like barrier that prevented the substrate (the chemical that the enzyme reacts with) getting to the enzyme. Over a few days the enzyme leaked through the barrier and, lo and behold, now when you measured activity there was more of it!

Thus was discovered the ‘lysosome’ – a cell-within-a cell that we now know is home to an array of some 40-odd enzymes that break down a range of biomolecules (proteinsnucleic acidssugars and lipids). Our self-effacing hero said it was down to ‘chance’ but in science, as in other fields of life, you make your own luck – often, as in this case, by spotting something abnormal, nailing it down and then coming up with an explanation.

In the last few years lysosomes have emerged as a major player in cancer because they help cells to escape death pathways. Furthermore, they can take up anti-cancer drugs, thereby reducing potency. For these reasons they are the focus of great interest as a therapeutic target.

Lysosomes in cells revealed by immunofluorescence.

Antibody molecules that stick to specific proteins are tagged with fluorescent labels. In these two cells protein filaments of F-actin that outline cell shape are labelled red. The green dots are lysosomes (picked out by an antibody that sticks to a lysosome protein, RAB9). Nuclei are blue (image: ThermoFisher Scientific).

Play it again Prof!

In something of a re-run of the lysosome story, the research team then found itself struggling with several other enzymes that also seemed to be shielded from the bulk of the cell – but the organelle these lived in wasn’t a lysosome – nor were they in mitochondria or anything else then known. Some 10 years after the lysosome the answer emerged as the ‘peroxisome’ – so called because some of their enzymes produce hydrogen peroxide. They’re also known as ‘microbodies’ – little sacs, present in virtually all cells, containing enzymatic goodies that break down molecules into smaller units. In short, they’re a variation on the lysosome theme and among their targets for catabolism are very long-chain fatty acids (for mitochondriacs the reaction is β-oxidation but by a different pathway to that in mitochondria).

Peroxisomes revealed by immunofluorescence.

As in the lysosome image, F-actin is red. The green spots here are from an antibody that binds to a peroxisome protein (PMP70). Nuclei are blue (image: Novus Biologicals)

Cell biology fans will by now have worked out that our first hero in this saga of heroes is Christian de Duve who shared the 1974 Nobel Prize in Physiology or Medicine with Albert Claude and George Palade.

A wonderful Belgian. Christian de Duve: physician and Nobel laureate.

Hooray!

Fascinating and important stuff – but nonetheless background to our main story which, as they used to say in The Goon Show, really starts here. It’s so exciting that, in 1992, they made a film about it! Who’d have believed it?! A movie about a fatty acid!! Cinema buffs may recall that in Lorenzo’s Oil Susan Sarandon and Nick Nolte played the parents of a little boy who’d been born with a desperate disease called adrenoleukodystrophy (ALD). There are several forms of ALD but in the childhood disease there is progression to a vegetative state and death occurs within 10 years. The severity of ALD arises from the destruction of myelin, the protective sheath that surrounds nerve fibres and is essential for transmission of messages between brain cells and the rest of the body. It occurs in about 1 in 20,000 people.

Electrical impulses (called action potentials) are transmitted along nerve and muscle fibres. Action potentials travel much faster (about 200 times) in myelinated nerve cells (right) than in (left) unmyelinated neurons (because of Saltatory conduction). Neurons (or nerve cells) transmit information using electrical and chemical signals.

The film traces the extraordinary effort and devotion of Lorenzo’s parents in seeking some form of treatment for their little boy and how, eventually, they lighted on a fatty acid found in lots of green plants – particularly in the oils from rapeseed and olives. It’s one of the dreaded omega mono-unsaturated fatty acids (if you’re interested, it can be denoted as 22:1ω9, meaning a chain of 22 carbon atoms with one double bond 9 carbons from the end – so it’s ‘unsaturated’). In a dietary combination with oleic acid  (another unsaturated fatty acid: 18:1ω9) it normalizes the accumulation of very long chain fatty acids in the brain and slows the progression of ALD. It did not reverse the neurological damage that had already been done to Lorenzo’s brain but, even so, he lived to the age of 30, some 22 years longer than predicted when he was diagnosed.

What’s going on?

It’s pretty obvious from the story of Lorenzo’s Oil that ALD is a genetic disease and you will have guessed that we wouldn’t have summarized the wonderful career of Christian de Duve had it not turned out that the fault lies in peroxisomes.

The culprit is a gene (called ABCD1) on the X chromosome (so ALD is an X-linked genetic disease). ABCD1 encodes part of the protein channel that carries very long chain fatty acids into peroxisomes. Mutations in ABCD1 (over 500 have been found) cause defective import of fatty acids, resulting in the accumulation of very long chain fatty acids in various tissues. This can lead to irreversible brain damage. In children the myelin sheath of neurons is damaged, causing neurological defects including impaired vision and speech disorders.

And the miracle?

It’s gene therapy of course and, helpfully, we’ve already seen it in action. Self Help – Part 2 described how novel genes can be inserted into the DNA of cells taken from a blood sample. The genetically modified cells (T lymphocytes) are grown in the laboratory and then infused into the patient – in that example the engineered cells carried an artificial T cell receptor that enabled them to target a leukemia.

In Gosh! Wonderful GOSH we saw how the folk at Great Ormond Street Hospital adapted that approach to treat a leukemia in a little girl.

Now David Williams, Florian Eichler, and colleagues from Harvard and many other centres around the world, including GOSH, have adapted these methods to tackle ALD. Again, from a blood sample they selected one type of cell (stem cells that give rise to all blood cell types) and then used genetic engineering to insert a complete, normal copy of the DNA that encodes ABCD1. These cells were then infused into patients. As in the earlier studies, they used a virus (or rather part of a viral genome) to get the new genetic material into cells. They choose a lentivirus for the job – these are a family of retroviruses (i.e. they have RNA genomes) that includes HIV. Specifically they used a commercial vector called Lenti-D. During the life cycle of RNA viruses their genomes are converted to DNA that becomes a permanent part of the host DNA. What’s more, lentiviruses can infect both non-dividing and actively dividing cells, so they’re ideal for the job.

In the first phase of this ongoing, multi-centre trial a total of 17 boys with ALD received Lenti-D gene therapy. After about 30 months, in results reported in October 2017, 15 of the 17 patients were alive and free of major functional disability, with minimal clinical symptoms. Two of the boys with advanced symptoms had died. The achievement of such high remission rates is a real triumph, albeit in a study that will continue for many years.

In tracing this extraordinary galaxy, one further hero merits special mention for he played a critical role in the story. In 1999 Jesse Gelsinger, a teenager, became the first person to receive viral gene therapy. This was for a metabolic defect and modified adenovirus was used as the gene carrier. Despite this method having been extensively tested in a range of animals (and the fact that most humans, without knowing it, are infected with some form of adenovirus), Gelsinger died after his body mounted a massive immune response to the viral vector that caused multiple organ failure and brain death.

This was, of course, a huge set-back for gene therapy. Despite this, the field has advanced significantly in the new century, both in methods of gene delivery (including over 400 adenovirus-based gene therapy trials) and in understanding how to deal with unexpected immune reactions. Even so, to this day the Jesse Gelsinger disaster weighs heavily with those involved in gene therapy for it reminds us all that the field is still in its infancy and that each new step is a venture into the unknown requiring skill, perseverance and bravery from all involved – scientists, doctors and patients. But what better encouragement could there be than the ALD story of young lives restored.

It’s taken us a while to piece together the main threads of this wonderful tale but it’s emerged as a brilliant example of how science proceeds: in tiny steps, usually with no sense of direction. And yet, despite setbacks, over much time, fragments of knowledge come together to find a place in the grand jigsaw of life.

In setting out to probe the recesses of metabolism, Christian de Duve cannot have had any inkling that he would build a foundation on which twenty-first century technology could devise a means of saving youngsters from a truly terrible fate but, my goodness, what a legacy!!!

References

Eichler, F. et al. (2017). Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy. The New England Journal of Medicine 377, 1630-1638.

 

Re-writing the Manual of Life

A little while ago we talked about a fantastic triumph by a team at Great Ormond Street Hospital (Gosh! Wonderful GOSH) in using a form of immunotherapy to save a little girl. What they did was to take the T cells from a sample of her blood and use gene editing – molecular cutting and pasting – to remove some genes and add others before growing more of the cells and then putting them back into the patient.

Gene editing – genetic engineering that removes or inserts sections of DNA – uses engineered nucleases, enzymes that snip DNA but do so in a controlled way by homing in on a specific site (i.e. a defined sequence of As, Cs, Gs and Ts).

We mentioned that there are four main ways of doing this kind of engineering – the GOSH group used ‘transcription activator-like effectors’ (TALEs). However, the method that has made the biggest headlines is called CRISPR/Cas, and it has been very much in the news because a legal battle is underway to determine who did what in its development and who, therefore, will be first in line for a Nobel Prize.

Fortunately we can ignore such base pursuits and look instead at where this technology might be taking us.

What is CRISPR/Cas?

CRISPRs (pronounced crispers) are bits of DNA that contain short repetitions of base sequence, each next to a ‘spacer’ sequence. The spacers have accumulated in bacteria as a defence mechanism – they’re part of the bacterial immune system – and they’re identical to sequences found in viruses that infect microbes. In other words, the cunning bugs pick up bits of dangerous viruses to make a rogues gallery so they can recognize and attack those viruses next time they pop in.

Close to CRISPR sit genes encoding Cas proteins (enzymes that cut DNA, so they’re ‘nucleases’). When the CRISPR-spacer DNA is read by the machinery of the cell to make RNA, the spacer regions stick to Cas proteins and the whole complex, including the viral sequences, can roam the cell seeking a virus with genetic material that matches the CRISPR RNA. The CRISPR RNA sticks to the virus and Cas chops its DNA – end of virus. So Cas, by binding to CRISPR RNA, becomes an RNA-guided DNA cutter.

crispr-pic

CRISPR-CAS: Bug defence against invaders. Viruses can attack bacteria just as they can human cells. Over time bugs have evolved a cunning defence strategy: they insert short bits of viral DNA into their own genome (above). These contain repeated sequences of bases and each is followed by short segments of ‘spacer DNA’ (above). This happens next to DNA that encodes Cas proteins so that both are ‘read’ to make RNA (transcription). Cas proteins bind to spacer RNA, leaving the adjacent viral RNA free to attach to any complementary viral DNA it encounters. The Cas enzyme is thus guided to DNA that it can cleave. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats.

Why is CRISPR/Cas in the headlines?

We saw in Gosh! Wonderful GOSH how the Great Ormond Street Hospital team tinkered with DNA and in Self Help – Part 2 we summarized another way of doing this using viruses (notably a disabled form of the human immunodeficiency virus) to carry novel genes into cells.

A further arm of immunotherapy attempts to reverse an effect called checkpoint blockade whereby the immune system response to tumours is damped down – e.g. by using antibodies that target a protein called PD-1 (Self Help – Part 1).

Now comes news of a Chinese trial which will be the first time cells modified using CRISPR–Cas9 gene editing have been injected into people. The chap in charge is Lu You from Sichuan University’s West China Hospital in Chengdu and the plan is to take T cells from the blood patients with metastatic non-small cell lung cancer for whom chemotherapy, radiation therapy and other treatments have failed.

The target will be the PD-1 gene, the idea being that, if you want to stop PD-1 doing its stuff, far better than mucking about with antibodies is to just knock out its gene: no gene no protein! What could possibly go wrong?

Well, wonderful though CRISPR is, it doesn’t always hit the right target but in this trial the cells can be tested to make sure it’s the PD-1 gene that’s been zonked – so that shouldn’t be a problem. However, it’s a blockbuster in that all the multiplied T cells put back into the patient will be active – i.e. will have lost the PD-1 brake. Whilst that may be good for zonking tumours, goodness knows what it might do elsewhere.

The initial trial is on a small scale – just 10 people. If there are problems one possibility is to try to take the T cells from the site of the tumour, which might select those specifically targeting the tumour – not straightforward as lung cancers are difficult to get at.

Anyone for a DNA upgrade?

It’s hard to say where all this is leading. However, as Chinese scientists have already made the first CRISPR-edited human embryos and the first CRISPR-edited monkeys, the only safe bet is that China will be to the fore.

 

The Shocking Effect of Boiled Bugs

There’s never a dull moment in science – well, not many – and at the moment no field is fizzing more than immunotherapy. Just the other day in Outsourcing the Immune Response we talked about the astonishing finding that cells from healthy people could be used to boost the immune response – a variant on the idea of taking from patients cells that attack cancers, growing them in the lab and using genetic engineering to increase potency (generally called adoptive cell therapy).

A general prod

Just when you thought that was as smart as it could get, along comes Angus Dalgleish and chums from various centres in the UK and Spain with yet another way to give the immune system a shock. They used microorganisms (i.e. bugs) as a tweaker. The idea is that bacteria (that have been heat-killed) are injected, they interact with the host’s immune system and, by altering the proteins expressed on immune cells (macrophages, natural killer cells and T cells) can boost the immune response. That in turn can act to kill tumour cells. It’s a general ‘immunomodulatory’ effect. Dalgleish describes it as “rather like depth-charging the immune system which has been sent to sleep”. Well, giving it a prod at least.

bugs-pic

Inactivating bugs (bacteria) and waking up the immune system.

And a promising effect

The Anglo-Spanish effort used IMM-101 (a heat-killed suspension of a bacterium called Mycobacterium obuense) injected under the skin, which has no significant side-effects. The trial was carried out in patients with advanced pancreatic cancer, a disease with dismal prognosis, and IMM-101 immunotherapy was combined with the standard chemotherapy drug (gemcitabine). IMM-101increased survival from a median of 4.4 months to 7 months with some patients living for more than a year and one for nearly three years.

Although the trial numbers are small as yet, this is a very exciting advance because it looks as though immunotherapy may be able to control one of the most serious of cancers in which its incidence nearly matches its mortality.

References

Dalgleish, A. et al. (2016). Randomised, open-label, phase II study of gemcitabine with and without IMM-101 for advanced pancreatic cancer. British Journal of Cancer doi: 10.1038/bjc.2016.271.

 

Outsourcing the Immune Response

We’re very trendy in these pages, for no other reason than that the idea is to keep up to date with exciting events in cancer biology. Accordingly, we have recently talked quite a lot about the emerging field of cancer immunotherapy – the notion that our in-built immune system will try to kill cancer cells as they emerge, because it ‘sees’ them as being to some extent ‘foreign’, but that when tumours make their presence known it has not been able to do the job completely. The idea of immunotherapy is to give our in-house system a helping hand and we’ve seen some of the approaches in Self Help – Part 2 and Gosh! Wonderful GOSH.

The immune see-saw

Our immune system walks a tight-rope: on the one hand it should attack and eliminate any ‘foreign’ cells it sees (so that we aren’t killed by infections) but, on the other, if it’s too efficient it will start destroying out own cells (which is what happens in auto-immune diseases such as Graves disease (overactive thyroid gland) and rheumatoid arthritis.

Like much of our biology, then, it’s a tug-of-war: to kill or to ignore? And, like the cell cycle that determines whether a cell should grow and divide to make two cells, it’s controlled by the balance between ‘accelerators’ and ‘brakes’. The main targets for anti-tumour immune activity are mutated proteins that appear on the surface of cancer cells – called neo-antigens (see The Shape of Things to Come?)

The aim of immunotherapy then is to boost tumour responses by disabling the ‘brakes’. And it’s had some startling successes with patients going into long-term remission. So the basic idea works but there’s a problem: generally immunotherapy doesn’t work and, so far, in only about one in ten of patients have there been significant effects.

Sub-contracting to soup-up detection

Until now it’s seemed that only a very small fraction of expressed neo-antigens (less than 1%) can turn on an immune response in cancer patients. In an exciting new take on this problem, a team of researchers from the universities of Oslo and Copenhagen have asked: “if someone’s immune cells aren’t up to recognizing and fighting their tumours (i.e. ‘seeing’ neo-antigens), could someone else’s help?” It turns out that many more than 1 in 100 neo-antigens are able to cause an immune response. Even more exciting (and surprising), immune cells (T cells) from healthy donors can react to these neo-antigens and, in vitro at least (i.e. in cells grown in the laboratory), can kill tumour cells.

118. pic

Genetic modification of blood lymphocytes

T cells are isolated from a blood sample and novel genes inserted into their DNA. The engineered T cells are expanded and then infused into the patient. In the latest development T cells from healthy donors are screened for reactivity against neo-antigens expressed in a patient’s melanoma. T cell receptors that  recognise neo-antigens are sequenced and then transferred to the patient’s T cells.

How does that work?

T cells (lymphocytes) circulating in the blood act, in effect, as scouts, scanning the surface of all cells, including cancer cells, for the presence of any protein fragments on their surface that should not be there. The first contact with such foreign protein fragments switches on a process called priming that ultimately enables T cells to kill the aberrant cells (see Invisible Army Rouses Home Guard).

What the Scandinavian group did was to screen healthy individuals for tissue compatibility with a group of cancer patients. They then identified a set of 57 neo-antigens from three melanoma patients and showed that 11 of the 57 could stimulate responses in T cells from the healthy donors (T cells from the patients only reacted to two neo-antigens). Indeed the neo-antigen-specific T cells from healthy donors could kill melanoma cells carrying the corresponding mutated protein.

What can possibly go wrong?

The obvious question is, of course, how come cells from healthy folk have a broader reactivity to neo-antigens than do the cells of melanoma patients? The answer isn’t clear but presumably either cancers can make T cell priming inefficient or T cells become tolerant to tumours (i.e. they see them as ‘self’ rather than ‘non-self’).

And the future?

The more critical question is whether the problem can be short-circuited and Erlend Strønen and friends set about this by showing that T cell receptors in donor cells that recognize neo-antigens can be sequenced and expressed in the T cells of patients. This offers the possibility of a further type of adoptive cell transfer immunotherapy to the one we described in Gosh! Wonderful GOSH.

https://cancerforall.wordpress.com/2015/11/19/gosh-wonderful-gosh/

As one of the authors, Ton Schumacher, put it “Our findings show that the immune response in cancer patients can be strengthened; there is more on the cancer cells that makes them foreign that we can exploit. One way we consider doing this is finding the right donor T cells to match these neo-antigens. The receptor that is used by these donor T-cells can then be used to genetically modify the patient’s own T cells so these will be able to detect the cancer cells.”

And Johanna Olweus commented that “Our study shows that the principle of outsourcing cancer immunity to a donor is sound. However, more work needs to be done before patients can benefit from this discovery. Thus, we need to find ways to enhance the throughput. We are currently exploring high-throughput methods to identify the neo-antigens that the T cells can “see” on the cancer and isolate the responding cells. But the results showing that we can obtain cancer-specific immunity from the blood of healthy individuals are already very promising.”

References

Strønen, M. Toebes, S. Kelderman, M. M. van Buuren, W. Yang, N. van Rooij, M. Donia, M.-L. Boschen, F. Lund-Johansen, J. Olweus, T. N. Schumacher. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science, 2016.

“Fighting cancer with the help of someone else’s immune cells.” ScienceDaily. ScienceDaily, 19 May 2016.

Going With The Flow

The next time you happen to be in Paris and have a spare moment you might wander over to, or even up, the Eiffel Tower. The exercise will do you good, assuming you don’t have a heart attack, and you can extend your knowledge of science by scanning the names of 72 French scientists that you’ll find beneath the square thing that looks like a 1st floor balcony. Chances are you won’t recognize any of them: they really are History Boys – only two were still alive when Gustave Eiffel’s exhibit was opened for the 1889 World’s Fair.

One of the army of unknowns is a certain Michel Eugène Chevreul – and he’s a notable unknown in that he gave us the name of what is today perhaps the most familiar biological chemical – after DNA, of course. Although Chevreul came up with the name (in 1815) it was another Frenchman, François Poulletier de la Salle who, in 1769, first extracted the stuff from gallstones.

A few clues

The ‘stuff’ has turned out to be essential for all animal life. It’s present in most of the foods we eat (apart from fruit and nuts) and it’s so important that we actually make about one gram of it every day to keep up our total of some 35 grams – mostly to be found in cell membranes and particularly in the plasma membrane, the outer envelope that forms the boundary of each cell. The cell membrane protects the cell from the outside world but it also has to allow chemicals to get in and out and to permit receptor proteins to transmit signals across the barrier. For this it needs to be flexible – which why membranes are formed from two layers of lipids back-to-back. The lipid molecules have two bits: a head that likes to be in contact with water (blue blobs in picture) to which is attached two ‘tails’ ­– fatty acid chains (fatty acids are unbranched chains of carbon atoms with a methyl group (CH3–) at one end and a carboxyl group (–COOH) at the other).

Bilayer

Cholesterol_molecule_ball

A lipid bilayer                                          

De la Salle’s substance

 

The lipid ‘tails’ can waggle around, giving the plasma membrane its fluid nature and, to balance this, membranes contain roughly one molecule of ‘stuff’ for every lipid (the yellow strands in the lipid bilayer). As you can see from the model of the substance found by de la Salle, it has four carbon rings with a short, fatty acid-like tail (the red blob is an oxygen atom). This enables it to slot in between the lipid tails, strengthening the plasma membrane by making it a bit more rigid, so it’s harder for small molecules to get across unless there is a specific protein carrier.

Bilayer aThe plasma membrane. A fluid bilayer made of phospholipids and cholesterol permits proteins to diffuse within the membrane and allows flexibility in their 3D structures so that they can transport small molecules and respond to extracellular signals.


De la Salle’s ‘stuff’ has become famous because high levels have been associated with heart disease and much effort has gone into producing and promoting drugs that reduce its level in the blood. This despite the fact that numerous studies have shown that lowering the amount of ‘stuff’ in our blood has little effect on mortality. In fact, if you want to avoid cardiovascular problems it’s clear your best bet is to eat a Mediterranean diet (mostly plant-based foods) that will make no impact on your circulating levels of ‘stuff’.

By now you will have worked out that the name Chevreul came up with all those years ago is cholesterol and it will probably have occurred to you that it’s pretty obvious that our efforts to tinker with it are doomed to failure.

We’ve known for along time that if you eat lots of cholesterol it doesn’t make much difference to how much there is in your bloodstream – mainly because cholesterol in foods is poorly absorbed. What’s more, because it’s so important, any changes we try to make in cholesterol levels are compensated for by alterations the internal production system.

Given how important it is and the fact that we both eat and make cholesterol, it’s not surprising that quite complicated systems have evolved for carting it around the body and delivering it to the right places. These involve what you might think of as molecular container ships: called lipoproteins they are large complexes of lipids (including cholesterol) held together by proteins. The cholesterol they carry comes in two forms: cholesterol itself and cholesterol esters formed by adding a fatty acid chain to one end of the molecule – which makes them less soluble in water.

lipoprotein-structureChol est fig

Lipoprotein                                                               Cholesterol ester

Formed by an enzyme – ACAT –
adding a fatty acid to cholesterol.
Avasimibe blocks this step.

 

So famous has cholesterol become even its taxi service has passed into common language – almost everyone knows that high-density lipoproteins (HDLs) carry so-called ‘good cholesterol’ (back to the liver for catabolism) – low concentrations of these are associated with a higher risk of atherosclerosis. On the other hand, high concentrations of low-density lipoproteins (LDLs) go with increasing severity of cardiovascular disease – so LDLs are ‘bad cholesterol’.

What’s this got to do with cancer?

The evidence that cholesterol levels play a role in cancer is conflicting. A number of studies report an association between raised blood cholesterol level and various types of cancer, whilst others indicate no association or the converse – that low cholesterol levels are linked to cancers. However, the Cancer Genome Atlas (TCGA) that profiles DNA mutations and protein expression reveals that the activity of some genes involved in cholesterol synthesis reflect patient survival for some cancer types: increased cholesterol synthesis correlating with decreased survival. Perhaps that accounts for evidence that the class of cholesterol lowering drugs called statins can have anti-tumour effects.

In a recent development Wei Yang and colleagues from various centres in China have come up with a trick that links cholesterol metabolism to cancer immunotherapy. They used a drug (avasimibe) that blocks the activity of the enzyme that converts cholesterol to cholesterol ester (that’s acetyl-CoA acetyltransferase – ACAT1). The effect of the drug is to raise cholesterol levels in cell membranes, in particular, in killer T cells. As we’ve noted, this will make the membranes a bit more rigid and a side-effect of that is to drive T cell receptors into clusters.

One or two other things happen but the upshot is that the killer T cells interact more effectively with target tumour cells and toxin release by the T cells – and hence tumour cell killing – is more efficient. The anti-cancer immune response has been boosted.

Remarkably, it turned out that when mice were genetically modified so that their T cells lacked ACAT1, a subset of these cells (CD8+) up-regulated their cholesterol synthesis machinery. Whilst this seems a paradoxical response, it’s very handy because it is these CD8+ cells that kill tumour cells. Avasimibe has been shown to be safe for short-term use in humans but the genetic engineering experiments in mice suggest that a similar approach, knocking out ACAT1, could be used in human immunotherapy.

References

Yang, W. et al. (2016). Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature 531, 651–655.

Dustin, M.L. (2016). Cancer immunotherapy: Killers on sterols. Nature 531, 583–584.

 

Invisible Army Rouses Home Guard

Writing this blog – perhaps any blog – is an odd pastime because you never really know who, if anyone, reads it or what they get out of it. Regardless of that, one person that it certainly helps is me. That is, trying to make sense of the latest cancer news is one of the best possible exercises for making you think clearly – well, as clearly as I can manage!

But over the years one other rather comforting thing has emerged: more and more often I sit down to write a story about a recent bit of science only to remember that it picks up a thread from a piece I wrote months or sometimes years ago. And that’s really cheering because it’s a kind of marker for progression – another small step forward.

Thus it was with this week’s headline news that a ‘cancer vaccine’ might be on the way. In fact this development takes up more than one strand because it’s about immunotherapy – the latest craze – that we’ve broadly explained in Self Help Part-1Gosh! Wonderful GOSH and Blowing-up Cancer and it uses artificial nanoparticles that we met in Taking a Swiss Army Knife to Cancer.

Arming the troops

What Lena Kranz and her friends from various centres in Germany described is yet another twist on the idea of giving our inbuilt defence – i.e. the immune system – a helping hand to tackle tumours. They made small sacs of lipid called nanoparticles (they’re so small you could get 300 in the width of a human hair), loaded them with bits of RNA and injected them into mice. This invisible army of fatty blobs was swept around the circulatory system whereupon two very surprising things happened. The first was that, with a little bit of fiddling (trying different proportions of lipid and RNA), the nanoparticles were taken up by two types of immune cells, with very little appearing in any other cells. This rather fortuitous result is really important because it means that the therapeutic agent (nanoparticles) don’t need to be directly targetted to a tumour cell – thus avoiding one of the perpetual problems of therapy.

The second event that was not at all a ‘gimme’ was that the immune cells (dendritic cells and macrophages) were stimulated to make interferon and they also used the RNA from the nanoparticles as if it was their own to make the encoded proteins – a set of tumour antigens (tumour antigens are proteins made by tumour cells that can be useful in identifying the cells. A large number of have now been found: one group of tumour antigens includes HER2 that we met as a drug target in Where’s That Tumour?)

The interferon was released into the tumour environment in two waves, bringing about the ‘priming’ of T lymphocytes so that, interacting via tumour antigens, they can kill target cells. By contrast with taking cells from the host and carrying out genetic engineering in the lab (Gosh! Wonderful GOSH), this approach is a sort of internal re-wiring achieved by giving a sub-set of immune system cells a bit of genetic code (in the form of RNA).

TAgs RNA Nano picNanoparticle cancer vaccine. Tiny particles (made of lipids) carry RNA into cells of the immune system (dendritic cells and macrophages) in mice. A sub-set of these cells releases a chemical signal (interferon) that promotes the activation of T lymphocytes. The imported RNA is translated into proteins (tumour antigens) – that are presented to T cells. A second wave of interferon (released from macrophages) completes T cell priming so that they are able to attack tumour cells by recognizing antigens on their surface (Kranz et al. 2016; De Vries and Figdor, 2016).

So far Kranz et al. have only tried this method in three patients with melanoma. All three made interferon and developed strong T-cell responses. As with all other immunotherapies, therefore, it is early days but the fact that widely differing strategies give a strong boost to the immune system is hugely encouraging.

Other ‘cancer vaccines’

As a footnote we might add that there are several ‘cancer vaccines’ approved by the US Food and Drug Administration (FDA). These include vaccines against hepatitis B virus and human papillomavirus, along with sipuleucel-T (for the treatment of prostate cancer), and the first oncolytic virus therapy, talimogene laherparepvec (T-VEC, or Imlygic®) for the treatment of some patients with metastatic melanoma.

How was it for you?

As we began by pointing out how good writing these pieces to clarify science is for me, the question for those dear readers who’ve made it to the end is: ‘How did I do?’

References

Kranz, L.M. et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016) doi:10.1038/nature18300.

De Vries, J. and Figdor, C. (2016). Immunotherapy: Cancer vaccine triggers antiviral-type defences.Nature (2016) doi:10.1038/nature18443.

 

New Era … Or Déjà vu?

 

Readers who follow events in the US of A – beyond the bizarre unfolding of the selection of the Republican Party’s nominee for President of the United States – may have noticed that the presidential incumbent put forward another of his bright ideas in the 2016 State of the Union Address. The plan launched by President Obama is to eliminate cancer and to this end $1 billion is to go into a national initiative with a strong focus on earlier detection, immunotherapy and drug combinations. It’s called a Moonshot’, presumably as a nod to President Kennedy’s 1961 statement that America should land a man on the moon (and bring him back!).011316_SOTU_THUMB_LARGE

A key aim of Moonshot is to improve all-round collaboration and to ‘bring about a decade’s worth of advances in five years.’ Part of this involvesbreaking down silos’ – which apparently is business-speak (and therefore a new one on me) for dealing with the problem of folk not wanting to share things with others in the same line of work. So someone’s spotted that science and medicine are not immune to this frailty.silo_mentality

On the home front …

In fact the President could be said to be slightly off the pace as, in October 2015, Cancer Research UK launched ‘Grand Challenges’ – a more modest (£100M) drive to tackle the most important questions in cancer. They’ve pinpointed seven problems and, helpfully, six of these will not be new to dedicated readers of these pages. They are:

  1. To develop vaccines (i.e. immunotherapy) to prevent non-viral cancers;
  2. To eradicate the 200,000 cancers caused each year by the Epstein Barr Virus;
  3. To understand the mutation patterns caused by different cancer-causing events;
  4. To improve early detection;
  5. To map the complexity of tumours at the molecular and cellular level;
  6. To find a way of targetting the cancer super-controller MYC;
  7. To work out how to target anti-cancer drugs to specific cells in the body.

{No/. 2 is the odd one out so it clearly hasn’t been too high a priority for me but we did talk about Epstein Barr Virus in Betrayed by Nature – phew!}.

But wait a minute

Readers of a certain age may be thinking this all sounds a bit familiar and, of course, they’re right. It was in 1971 that President Richard Nixon launched the ‘war on cancer’, the aim of which was to, er, to eliminate cancers. Given that 45 years on in the USA there’ll be more than 1.6 million new cases of cancer and 600,000 cancer deaths this year, it’s tempting to conclude that all we’ve learned is that things are a lot more complicated than we ever imagined.

Well, you can say that again. Of the several hundred genes that we now know can play a role in cancers, two are massively important MYC (‘mick’) and P53. Screen the scientific literature for research publications with one of those names in the title and you get, wait for it, over 50,000 for ‘MYC’ and for P53 over 168,000. It’s impossible to grasp how many hours of global sweat and toil went into churning out that amount of work – and that’s studies of just two bits of the jigsaw!

So 45 years of digging have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and cancer rates remain below 5% 1%, respectively. For these and other cancers there has been very little progress.

So 45 years of digging away have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and pancreatic cancer rates remain below 5% and 1%, respectively. For these and other cancers there has been very little progress.

All systems go?

Well, maybe. Moonshot is aimed at better and earlier diagnosis, more precise surgery and radiotherapy, and more drugs that can be better targeted. Oh, and bearing in mind that one in three cancers could be prevented, keeping plugging away at lifestyle factors.

How will it fare? Well, now we’re in the genomic era we can be sure that the facts mountain resulting from 45 years of collective toil will be as a molehill to the Everest of data now being mined and analysed. From that will emerge, we can assume with some confidence, a gradual refinement of the factors that are critical in determining the most effective treatment for an individual cancer.

Just recently we described in The Shape of Things to Come the astonishingly detailed picture that can be drawn of an individual tumour when it’s subjected to the full technological barrage now available. As we learn more about the critical factors, immunotherapy regimens will become more precise and the current response rate of about 10% of patients will rise.

Progress will still be slow, as we noted in The Shape of Things to Come – don’t expect miracles but, with lots of money, things will get better.

Gosh! Wonderful GOSH

Anyone who reads these pages will long ago, I trust, have been persuaded that the molecular biology of cells is fascinating, beautiful and utterly absorbing – and all that is still true even when something goes wrong and cancers make their unwelcome appearance. Which makes cancer a brilliant topic to talk and write about – you know your audience will be captivated (well, unless you’re utterly hopeless). There’s only one snag, namely that – perhaps because of the unwelcome nature of cancers – it’s tough to make jokes. One of the best reviews I had for Betrayed by Nature was terrifically nice about it but at the end, presumably feeling that he had to balance things up, the reviewer commented that it: “..is perhaps a little too light-hearted at times…” Thank you so much anonymous critic! Crikey! If I’d been trying to do slap-stick I’d have bunged in a few of those lewd chemicals – a touch of erectone, a bit of PORN, etc. (btw, the former is used in traditional Chinese medicine to treat arthritis and the latter is poly-ornithinine, so calm down).

I guess my serious referee may have spotted that I included a poem – well, two actually, one written by the great JBS Haldane in 1964 when he discovered he had bowel cancer which begins:

I wish I had the voice of Homer

To sing of rectal carcinoma,

Which kills a lot more chaps, in fact,
Than were bumped off when Troy was sacked.

Those couplets may reflect much of JBS with whom I can’t compete but, nevertheless, in Betrayed by Nature I took a deep breath and had a go at an update that began:

Long gone are the days of Homer
But not so those of carcinoma,
Of sarcoma and leukemia

And other cancers familia.
But nowadays we meet pre-school
That great and wondrous Molecule.
We know now from the knee of Mater
That DNA’s the great creator.

and went on:

But DNA makes cancer too

Time enough—it’ll happen to you.
“No worries sport” as some would say,
These days it’s “omics” all the way.

So heed the words of JBS

Who years ago, though in distress,
Gave this advice on what to do

When something odd happens to you:
“Take blood and bumps to your physician
Whose only aim is your remission.”

I’d rather forgotten my poem until in just the last week there hit the press a story illustrating that although cancer mayn’t be particularly fertile ground for funnies it does gloriously uplifting like nothing else. It was an account of how science and medicine had come together at Great Ormond Street Hospital to save a life and it was even more thrilling because the life was that of a little girl just two years old. The saga brought my poem to mind and it seemed, though I say it myself, rather spot on.

The little girl, Layla, was three months old when she was diagnosed with acute lymphoblastic leukemia (ALL) caused by a piece of her DNA misbehaving by upping sticks and moving to a new home on another chromosome – one way in which genetic damage can lead to cancer. By her first birthday chemotherapy and a bone marrow transplant had failed and the only remaining option appeared to be palliative care. At this point the GOSH team obtained special dispensation to try a novel immunotherapy using what are being called “designer immune cells“. Over a few months Layla recovered and is now free of cancer. However, there are no reports of Waseem Qasim and his colleagues at GOSH and at University College London dancing and singing the Trafalgar Square fountains – they’re such a reserved lot these scientists and doctors.

How did they do it?

In principle they used the gene therapy approach that, helpfully, we described recently (Self Help Part 2). T cells isolated from a blood sample have novel genes inserted into their DNA and are grown in the lab before infusing into the patient. The idea is to improve the efficiency with which the T cells target a particular protein (CD19) present on the surface of the leukemia cells by giving them artificial T cell receptors (also known as chimeric T cell receptors or chimeric antigen receptors (CARs) – because they’re made by fusing several bits together to make something that sticks to the target ‘antigen’ – CD19). The engineered receptors thereby boost the immune response against the leukemia. The new genetic material is inserted into a virus that carries it into the cells. So established is this method that you can buy such modified cells from the French biotech company Cellectis.

105 picAdoptive cell transfer immunotherapy. T cells are isolated from a blood sample and novel genes inserted into their DNA. The GOSH treatment also uses gene editing by TALENs to delete two genes. The engineered T cells are expanded, selected and then infused into the patient.

Is that all?

Not quite. To give themselves a better chance the team added a couple of extra tricks. First they included in the virus a second gene, RQR8, that encodes two proteins – this helps with identifying and selecting the modified cells. The second ploy is, perhaps, the most exciting of all: they used gene editing – a rapidly developing field that permits DNA in cells to be modified directly: it really amounts to molecular cutting and pasting. Also called ‘genome editing’ or ‘genome editing with engineered nucleases’ (GEEN), this form of genetic engineering removes or inserts sections of DNA, thereby modifying the genome.

The ‘cutting’ is done by proteins (enzymes called nucleases) that snip both strands of DNA – creating double-strand breaks. So nucleases are ‘molecular scissors.’ Once a double-strand break has been made the built-in systems of cells swing into action to repair the damage (i.e. stick the DNA back together as best it can without worrying about any snipped bits – these natural processes are homologous recombination and non-homologous end-joining, though we don’t need to bother about them here).

To be of any use the nucleases need to be targeted – made to home in on a specific site (DNA sequence) – and for this the GOSH group used ‘transcription activator-like effectors’ (TALEs). The origins of these proteins could hardly be further away from cancer – they come from a family of bacteria that attacks hundreds of different types of plants from cotton to fruit and nut trees, giving rise to things like citrus canker and black rot. About six years ago Jens Boch of the Martin-Luther-University in Halle and Adam Bogdanove at Iowa State University with their colleagues showed that these bugs did their dirty deeds by binding to regulatory regions of DNA thereby changing the expression of genes, hence affecting cell behavior. It turned out that their specificity came from a remarkably simple code formed by the amino acids of TALE proteins. From that it’s a relatively simple step to make artificial TALE proteins to target precise stretches of DNA and to couple them to a nuclease to do the cutting. The whole thing makes a TALEN (transcription activator-like effector nuclease). TALE proteins work in pairs (i.e. they bind as dimers on a target DNA site) so an artificial TALEN is like using both your hands to grip a piece of wood either side of the point where, using your third hand, you make the cut. The DNA that encodes the whole thing is inserted into plasmids that are transfected into the target cells; the expressed gene products then enter the nucleus to work on the host cell’s genome. There are currently three other approaches to nuclease engineering (zinc finger nucleases, the CRISPR/Cas system and meganucleases) but we can leave them for another time.

The TALENs made by the GOSH group knocked out the T cell receptor (to eliminate the risk of an immune reaction against the engineered T cells (called graft-versus-host disease) and CD52 (encodes a protein on the surface of mature lymphocytes that is the target of the monoclonal antibody alemtuzumab – so this drug can be used to prevent rejection by the host without affecting the engineered T cells).

What next?

This wonderful result is not a permanent cure for Layla but it appears to be working to stave off the disease whilst she awaits a matched T cell donor. It’s worth noting that a rather similar approach has been used with some success in treating HIV patients but it should be born in mind that, brilliant though these advances are, they are not without risks – for example, it’s possible that the vector (virus) that delivers DNA might have long-term effects – only time will tell.

Almost the most important thing in this story is what the GOSH group didn’t do. They used the TALENs gene editing method to knock out genes but it’s also a way of inserting new DNA. All you need to do is add double-stranded DNA fragments in the correct form at the same time and the cell’s repair system will incorporate them into the genome. That offers the possibility of being able to repair DNA damage that has caused loss of gene function – a major factor in almost all cancers. Although there is still no way of tackling the associated problem of how to target gene editing to tumour cells, it may be that Layla’s triumph is a really significant step for cancer therapy.

Reference

Smith, J. et al. (2015). UCART19, an allogeneic “off-the-shelf” adoptive T-cell immunotherapy against CD19+ B-cell leukemias. Journal of Clinical Oncology 33, 2015 (suppl; abstr 3069).

 

Holiday Reading (3) – Stopping the Juggernaut

The mutations that drive cancers fall into two major groups: those that reduce or eliminate the activity of affected proteins and those that have the opposite effect and render the protein abnormally active. It’s intuitively easy to see how the latter work: if a protein (or more than one) in a pathway that tells cells to proliferate becomes more efficient the process is accelerated. Less obvious is how losing an activity might have a similar effect but this comes about because the process by which one cell becomes two (called the cell cycle) is controlled by both positive and negative factors (accelerators and brakes if you will). This concept of a balancing act – signals pulling in opposite directions – is a common theme in biology. In the complex and ever changing environment of a cell the pressure to reproduce is balanced by cues that ask crucial questions. Are there sufficient nutrients available to support growth? Is the DNA undamaged, i.e. in a fit state to be replicated? If the answer to any of these questions is ‘no’ the cell cycle machinery applies the brakes, so that operations are suspended until circumstances change. The loss of negative regulators releases a critical restraint so that cells have a green light to divide even when they should not – a recipe for cancer.

Blanc sides.004

The cell cycle.

Cells are stimulated by growth factors to leave a quiescent state (G0) and enter the cell cycle – two growth phases (G1 & G2), S phase where DNA is duplicated and mitosis (M) in which the cells divide to give to identical daughter cells. Checkpoints can arrest progression if, for example, DNA is damaged. 

We’re all familiar with this kind of message tug-of-war at the level of the whole animal. We’ve eaten a cream cake and the schoolboy within is saying ‘go on, have another’ whilst the voice of wisdom is whispering ‘if you go on for long enough you’ll end up spherical.’

Because loss of key negative regulators occurs in almost all cancers it is a high priority to find ways of replacing inactivated or lost genes. Thus far, however, successful ‘gene therapy’ approaches have not been forthcoming with perhaps the exception of the emerging field of immunotherapy. The aim here is to boost the activity of the immune system of an individual – in other words to give an innate anti-cancer defense a helping hand. The immune system can affect solid cancers through what’s become known as the tumour microenvironment – the variety of cells and messengers that flock to the site of the abnormal growth. We’ve referred to these as ‘groupies’ and they include white blood cells. They’re drawn to the scene of the crime by chemical signals released by the tumour – the initial aim being to liquidate the intruder (i.e. tumour cells). However, if this fails, a two-way communication sees would-be killers converted to avid supporters that are essential for cancer development and spread.

Blanc sides.002

The tumour microenvironment. Tumour cells release chemical messengers that attract other types of cell, in particular those that mediate the immune response. If the cancer cells are not eliminated a two-way signaling system is established that helps tumour development.

There is much optimism that this will evolve into a really effective therapy but it is too early for unreserved confidence.

The obstacle of reversing mutations that eliminate the function of a gene has led to the current position in which practically all anti-cancer agents in use are inhibitors, that is, they block the activity of a protein (or proteins) resulting in the arrest of cell proliferation – which may ultimately lead to cell death. Almost all these drugs are not specific for tumour cells: they hit some component of the cell replication machinery and will block division in any cell they reach – which is why so many give rise to the side-effects notoriously associated with cancer chemotherapy. For example, the taxanes – widely used in this context – stick to protein cables to prevent them from pulling duplicated DNA strands apart so that cells, in effect, become frozen in final stages of division. Other classes of agent target different aspects of the cell cycle.

It is somewhat surprising that non-tumour specific agents work as well as they do but their obvious shortcomings have provided a major incentive for the development of ‘specific’ drugs – meaning ones that hit only tumour cells and leave normal tissue alone. Several of these have come into use over the past 15 years and more are in various stages of clinical trials. They’re specific because they knock out the activity of mutant proteins that are made only in tumour cells. Notable examples are Zelboraf® manufactured by Roche (hits the mutated form of a cell messenger – called BRAF – that drives a high proportion of malignant melanomas) and Gleevec® (Novartis AG: blocks a hybrid protein – BCR-ABL – that is usually formed in a type of leukemia).

These ‘targeted therapies’ are designed to not so much to poke the blancmange as to zap it by knocking out the activity of critical mutant proteins that are the product of cancer evolution. And they have produced spectacular remissions. However, in common with all other anti-cancer drugs, they suffer from the shortcoming that, almost inevitably, tumours develop resistance to their effects and the disease re-surfaces. The most remarkable and distressing aspect of drug resistance is that it commonly occurs on a timescale of months.

And being outwitted

Tumour cells use two tactics to neutralize anything thrown at them before it can neutralize them. One is to treat the agent as garbage and activate proteins in the cell membrane that pump it out. That’s pretty smart but what’s really staggering is the flexibility cells show in adapting their signal pathways to counter the effect of a drug blocking a specific target. Just about any feat of molecular gymnastics that you can imagine has been shown to occur, ranging from switching to other pathways in the signalling network to short-circuit the block, to evolving secondary mutations in the target mutant protein so that the drug can no longer stick to it. Launching specific drugs at cells may give them a mighty poke in a particularly tender spot, and indeed many cells may die as a result, but almost inevitably some survive. The blancmange shakes itself, comes up with a counter and gets down to business again. This quite extraordinary resilience of tumour cells derives from the infinite adaptability of the genome and we might do well to reflect that in trying to come up with anti-cancer drugs we are taking on an adversary that has overcome the challenges involved in generating the umpteen million species to have emerged during the earth’s lifetime.

Not the least disheartening aspect of this scenario is that when tumours recur after an initial drug treatment they are often more efficient at propagating themselves, i.e. more aggressive, than their precursors.