Invisible Army Rouses Home Guard

Writing this blog – perhaps any blog – is an odd pastime because you never really know who, if anyone, reads it or what they get out of it. Regardless of that, one person that it certainly helps is me. That is, trying to make sense of the latest cancer news is one of the best possible exercises for making you think clearly – well, as clearly as I can manage!

But over the years one other rather comforting thing has emerged: more and more often I sit down to write a story about a recent bit of science only to remember that it picks up a thread from a piece I wrote months or sometimes years ago. And that’s really cheering because it’s a kind of marker for progression – another small step forward.

Thus it was with this week’s headline news that a ‘cancer vaccine’ might be on the way. In fact this development takes up more than one strand because it’s about immunotherapy – the latest craze – that we’ve broadly explained in Self Help Part-1Gosh! Wonderful GOSH and Blowing-up Cancer and it uses artificial nanoparticles that we met in Taking a Swiss Army Knife to Cancer.

Arming the troops

What Lena Kranz and her friends from various centres in Germany described is yet another twist on the idea of giving our inbuilt defence – i.e. the immune system – a helping hand to tackle tumours. They made small sacs of lipid called nanoparticles (they’re so small you could get 300 in the width of a human hair), loaded them with bits of RNA and injected them into mice. This invisible army of fatty blobs was swept around the circulatory system whereupon two very surprising things happened. The first was that, with a little bit of fiddling (trying different proportions of lipid and RNA), the nanoparticles were taken up by two types of immune cells, with very little appearing in any other cells. This rather fortuitous result is really important because it means that the therapeutic agent (nanoparticles) don’t need to be directly targetted to a tumour cell – thus avoiding one of the perpetual problems of therapy.

The second event that was not at all a ‘gimme’ was that the immune cells (dendritic cells and macrophages) were stimulated to make interferon and they also used the RNA from the nanoparticles as if it was their own to make the encoded proteins – a set of tumour antigens (tumour antigens are proteins made by tumour cells that can be useful in identifying the cells. A large number of have now been found: one group of tumour antigens includes HER2 that we met as a drug target in Where’s That Tumour?)

The interferon was released into the tumour environment in two waves, bringing about the ‘priming’ of T lymphocytes so that, interacting via tumour antigens, they can kill target cells. By contrast with taking cells from the host and carrying out genetic engineering in the lab (Gosh! Wonderful GOSH), this approach is a sort of internal re-wiring achieved by giving a sub-set of immune system cells a bit of genetic code (in the form of RNA).

TAgs RNA Nano picNanoparticle cancer vaccine. Tiny particles (made of lipids) carry RNA into cells of the immune system (dendritic cells and macrophages) in mice. A sub-set of these cells releases a chemical signal (interferon) that promotes the activation of T lymphocytes. The imported RNA is translated into proteins (tumour antigens) – that are presented to T cells. A second wave of interferon (released from macrophages) completes T cell priming so that they are able to attack tumour cells by recognizing antigens on their surface (Kranz et al. 2016; De Vries and Figdor, 2016).

So far Kranz et al. have only tried this method in three patients with melanoma. All three made interferon and developed strong T-cell responses. As with all other immunotherapies, therefore, it is early days but the fact that widely differing strategies give a strong boost to the immune system is hugely encouraging.

Other ‘cancer vaccines’

As a footnote we might add that there are several ‘cancer vaccines’ approved by the US Food and Drug Administration (FDA). These include vaccines against hepatitis B virus and human papillomavirus, along with sipuleucel-T (for the treatment of prostate cancer), and the first oncolytic virus therapy, talimogene laherparepvec (T-VEC, or Imlygic®) for the treatment of some patients with metastatic melanoma.

How was it for you?

As we began by pointing out how good writing these pieces to clarify science is for me, the question for those dear readers who’ve made it to the end is: ‘How did I do?’

References

Kranz, L.M. et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016) doi:10.1038/nature18300.

De Vries, J. and Figdor, C. (2016). Immunotherapy: Cancer vaccine triggers antiviral-type defences.Nature (2016) doi:10.1038/nature18443.

 

Advertisements

Transparently Obvious

 

Scientists have a well-earned reputation for doing odd things – by which I mean coming up with a ‘finding’ that leaves me, at least, wondering how, in the name of all things wonderful, they ever got money to do their study. To be fair, it’s the ‘social scientists’ – rather than the ‘real’ lot – that excel in this field. An example? Take your pick. They crop up pretty well weekly in the press. I liked the one on how something called ‘personal congruence’ affects marriage survival. The more congruence you and your partner have the better your chances: if, over time, your congruence goes down the tubes, your relationship will surely follow. But what on earth is congruence? Seemingly it’s a ‘state of agreeing.’ Lots of it equals harmony, loss of it = discord. So, it is what you remember from school geometry: it means more or less equal. Wow! Now I’ve grasped the upshot of this ‘study’: agreeably happy couples tend to make it: pairings based on whacking each other with frying pans tend to end in tears. Why didn’t they tell us earlier!!

Axolotl

   Axolotl

Fortunately, in my world, even the weirdies usually turn out to be quite sensible, once you know what’s going on. Many moons ago a girl-friend asked me if I’d like to see her collection of axolotls. Not having a clue what she was on about I gave it an excited ‘yes please’. Whilst it mayn’t have been what I was hoping for (I was very young back then), I immediately fell in love with these wonderful amphibians that I’d never heard of as she explained what I should have known: these ‘Mexican walking fish’ have very large embryos which makes them particularly useful for studying development. These sensational salamanders really are amazing, not least because they can regenerate entire limbs after they’ve been chopped off.

More recently there’s been another unlikely recruit to the scientific armoury: the zebrafish – a tropical freshwater fish from the Himalayas. This mighty minnow was the first vertebrate to be cloned which led to its being genetically modified to give a transparent variety. That’s all good fun but what on earth is the point of a see-through fish? Well, in Betrayed by Nature we pointed out that you can actually watch tumours growing in transparent zebrafish and we got so excited by that we even included a photo – kindly provided by Richard White of the Dana Farber Cancer Institute in Boston. The cancer was a melanoma which had grown into a black mass about 1 cm in diameter in the fish’s body after a small number of tumour cells had been injected a couple of weeks earlier.

And the driver is …

Nearly 15 years ago, just as the first complete sequence of human DNA was being unveiled, Mike Stratton and his colleagues at the Sanger Centre in Cambridge discovered a mutation that arises in about two-thirds of all malignant melanomas. It’s in a gene called BRAF. The protein made by the gene is an enzyme that’s part of a signalling pathway that pushes cells to divide. The mutation changes the shape of BRAF protein so it works 24/7 as an enzyme: the pathway is no longer controlled by a message from the world beyond the cell. It’s a ‘molecular switch’ that’s been flipped by mutation to act as a cancer ‘driver.’

Richard White and his colleagues showed that the same mutation drove melanoma development in zebrafish and that when it did so something remarkable happened. As the tumours got going they turned on a gene that is normally only required during the first 72 hours after fertilization. The gene’s called crestin – because it’s switched on in a tissue called the neural crest where crestin protein helps to form the bony support for the gills. After that it’s switched off and crestin protein never appears again. Except in the pigment-containing cells called melanocytes when they are turning into a tumour.

Seeing the problem

In a great example of how science can work, Charles Kaufman, Leonard Zon and colleagues in Boston and other centres took this finding and made another transgenic variant of the transparent zebrafish. They cut out the stretch of DNA that controls whether the crestin gene is ‘on’ or ‘off’ and hooked it up to a gene that makes a green fluorescent protein (GFP). Result: when the machinery of a cell turns crestin on, GFP is also made – and the cell glows green under the appropriate light. Hence you would expect to see a glowing neural crest early in development but thereafter a non-glowing fish. Unless it has a melanoma. And Zon & Co saw exactly that. Because green fluorescent protein glows so brightly, a single cell shows up and it turned out that whenever one green cell was detected it always went on to expand and grow into a large melanoma tumour.

1 cell to mel

Tracking a single cell turning into a tumour over 6, 9, 11.5 and 17 weeks. The green fluorescence marks an early developmental gene (crestin) being re-activated in a melanoma tumour (from Kaufman et al., 2016).

But why might it be useful to ‘see’ single cells?

Since the original finding by Stratton & Co more detailed studies have confirmed that mutated BRAF is indeed an important ‘driver’ in about two-thirds of malignant melanoma. But here’s the odd thing: lots of melanocytes (the cells that can turn into melanomas) have mutated BRAF – but they don’t become cancerous. Why not? And there’s something else: it’s well-known that ultraviolet radiation in sunlight causes many melanomas and they do indeed often arise on exposed skin – but they can also crop up in places where, as they say, the sun doesn’t shine. So clearly, important though mutated BRAF and sunlight are, there’s something else that’s critical for malignant melanoma.

The Kaufman experiment was remarkable, not least because it offers a way of getting at this key question of what happens in a cell to kick it off as a tumour, by comparison with a near neighbour that remains ‘normal.’

The tumour cells used in this model carry mutated BRAF and another gene, P53, was knocked out. This gives two major genetic drivers and it may be that further genetic changes aren’t needed. If that’s the case, then the decisive push must come either from epigenetic changes (that affect gene expression without change in DNA sequence) or from adaptations of the tumour microenvironment to provide an optimal niche for expansion. At the moment we don’t know very much about these critical areas of cancer biology. Being able to follow single cells may lead us to the answers.

Keep your eye on the transparent minnows!

Reference

Kaufman, C.K., Zon, L.I. et al. (2016). A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351, Issue 6272, pp. DOI: 10.1126/science.aad2197

 

Lethal ZIP codes

In Keeping Cancer Catatonic we retailed how, over 125 years ago, the London physician Stephen Paget came up with his ‘seed and soil’ idea to explain why it was that when cancers spread to distant sites around the body by getting into the circulation they didn’t simply stick to the first tissue they came across. Paget had spotted that cancers tend to have preferred sites for spreading: tumours of the eye tend to travel to the liver, rather than the much handier brain, and breast cancers, Paget’s speciality, commonly spread to the liver but also to the lungs, kidneys, spleen and bone. So his idea was that certain distant secondary sites are somehow made more receptive to tumor growth, just as soil can be prepared for seeds to sprout.

So the key question became ‘how?’ and it’s hung in the cancer air for well over a century during which we’ve made very little progress towards an answer – and it is crucial because the business of tumour cells spreading (metastasizing) causes most cancer deaths (over 90%).

But, at long last, things have started to move, largely due to the efforts of David Lyden and his colleagues at Weill Cornell Medical College. Their first astonishing contribution was to show that cells in primary tumours release messengers into the circulation and these, in effect, tag what will become landing points for wandering tumour cells – i.e., the target sites are determined before any tumour cells actually set foot outside the confines of the primary tumour.

After that seismic revelation the story advanced a step further (in Scattering the Bad Seed) with some molecular detail of how the sites are marked – an effect Lyden has christened ‘Bookmarking cancer’ – and how when tumour cells do settle in their new niche they may be kept dormant for many years before starting to expand.

Carrying the flag

The next chapter in the story, as retailed in Holiday Reading (4) – Can We Make Resistance Futile?, revealed that the message is carried by small sacs – like little cells – called exosomes that are released from tumour cells. These float around the circulation until they find their target site, whereupon they plant the flag by setting off a chain reaction that produces a sticky protein – fibronectin – a kind of glue for immune cells and tumour cells.

That is all truly amazing stuff but, as we noted in Holiday Reading (4) – Can We Make Resistance Futile?, a recurring theme in science is that one answer merely poses the next question – in this case ‘what’s the messenger?’

As in all the best thrillers, the authors have kept us in suspense to the last, helped presumably by their not knowing the answer. But in this week’s Nature (Oct. 28, 2015) comes the denoument to this whodunit.

Mister postman look and see …

Many moons ago an outfit called the Marvelettes had a No. 1 hit with Please Mr. Postman and somewhat later the Fab Four did a re-hash that met with equal success. Perhaps we should have asked them how nature would go about directing little packages around the body. John, Ringo and the lads would, with their earthy, Liverpudlian logic, have pointed out the triviality of the problem of exosome addressing. ‘It’s not like you’re sending stuff all over the world, is it? You’ve only got a few targets – the major organs of the body. So a dead simple code will do. You know your messengers are proteins – ’coz they do everything – OK? So, pick a protein that comes in two bits with a few variants of each: mix and match and there’s yer postcodes. Now … what was that ditty about yellow subsurface vessels …’

And so it came to pass …

And the messenger is …

A family of proteins called integrins whose job is to span the membranes of cells, thereby promoting cell-cell interactions. They are indeed made of two different chains stuck together (called α (alpha) and β (beta)) and the upshot is that our cells can make about 24 unique integrins – more than enough to form a coded address system to direct tumour cells around the body. Well done lads!

What Ayuko Hoshino, David Lyden and their many collaborators did was to tag exosomes released from various types of cancer cell with a fluorescent dye and inject them into mice. The fluorescent label enabled them to track the exosomes and it turned out that, for a variety of cancer cells (breast, pancreatic, colorectal, lung, melanoma and pediatric) the exosomes travelled to the organs associated with metastasis (e.g., breast cancer exosomes stuck in the lungs, pancreatic cancer exosomes in the liver, etc). In other words exosome spread mimicked the pattern of the tumour from which they were derived. Once they had landed the exosomes set about reprogramming the organ sites to make a fertile microenvironment capable of supporting tumor cell growth in a new colony.

When they looked at the exosome proteins they found a particular member of the integrin family flagged each organ-specific site. Thus α6β4 promotes lung metastasis, αvβ5 homes in on the liver, αvβ3 on the brain, etc.

MapFinding a home

To spread around the body (metastasise) primary tumours first release small sacs (exosomes) carrying protein tags (integrins). Moving through the circulatory system the integrin tags home in to specific addresses found on different organs. The effect of exosomes sticking to target sites is to prepare the ground for cells released by the tumour to adhere and colonise.

Down the tube

You could think of primary tumours as being a bit like us when we move to a new city and try to find a des. res. in a place you don’t know. We could just ramble round the subway system until something catches our eye but that might take for ever. Much more efficient is to ask someone with local knowledge where would be good spots to target. For disseminating tumours their exosomes are the scouts who do the foot-slogging: the protein signatures on the surface of these small, tumour-secreted packages home in on postcodes that define a desirable locale for metastatic spread.

Shooting the messenger

An obvious question is ‘If exosomes are critical in defining metastatic sites, can you block their action – and what happens when you do?’ In preliminary experiments Hoshino & Co showed that either knockdown of specific integrins or blocking the capacity of these proteins to stick to their targets (with a specific antibody or short synthetic peptides) significantly reduced exosome adhesion, thereby blocking pre-metastatic niche formation and liver metastasis.

A new beginning?

We described these fabulous results as the denouement but, of course, it isn’t. As Mr. Churchill remarked in a somewhat different context: ‘Now this is not the end.’ It is rather a step to answering an old question but it’s incredibly exciting. If screening for exosomes leads to the detection of cancer not just years but perhaps decades earlier than can be achieved by present methods and if blocking their action can keep metastasis at bay, then the field of cancer will be utterly transformed.

References

Hoshino, A. et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature doi:10.1038/nature15756.

Ruoslahti, E. (1996). RGD and Other Recognition Sequences for Integrins. Annual Review of Cell and Developmental Biology 12, 697-715.

Self Help – Part 2

In the second type of cancer immunotherapy a sample of a patient’s T lymphocytes is grown in the lab. This permits either expansion of the number of cells that recognize the tumour or genetic engineering to modify the cells so they express receptors on their surface that target them to the tumour cell surface. Infusion of these manipulated cells into the patient enhances tumour cell killing. We’re now in the realms of ‘personalized medicine’.

A little more of a good thing

The first of these methods picks up a weakness in the patient’s immune system whereby it makes lymphocytes that kill tumour cells but can’t make enough – their protective effect is overwhelmed by the growing cancer. By taking small pieces of surgically removed tumours and growing them in the lab, it’s possible to select those T cells that have killing capacity. These are expanded over a few weeks to make enough cells to keep on growing when they’re infused back into the patient. The upshot is a hefty boost for the natural anti-tumour defence system. The pioneer of this method, called adoptive cell therapy, is Steven Rosenberg (National Cancer Institute, Bethesda) and it has been particularly effective for melanomas. Responses are substantially improved by treatment with drugs that reduce the white cell count before samples are taken for T cell selection – probably because the system responds by making growth factors to restore the balance and these drive the expansion of the infused cells.

A wonderful benefit of this method is its efficacy against metastases – i.e. tumour growths that have spread from the primary site – perhaps not surprising as it’s what Rosenberg calls a “living” treatment, in other words it just gives a helping hand to what nature is already trying to do.

93. Fig. 1Selecting naturally occurring T cells with anti-tumour activity

Tumour fragments are grown in the laboratory: lymphocytes that kill tumour cells are selected and expanded in culture.  About 6 weeks growth yields enough cells to infuse into the patient.

Gene therapy

A more sophisticated approach to boosting innate immunity is to introduce new genes into the genetic material (the genome) of T cells to target them to tumour cells with greater efficiency. An ordinary blood sample suffices as a starting point from which T cells are isolated. One way of getting them to take up novel genes uses viruses – essentially just genetic material wrapped in an envelope. The virus is ‘disabled’ so that it has none of its original disease-causing capacity but retains infectivity – it sticks to cells. ‘Disabling’ means taking just enough of the original genome to make the virus – a viral skeleton – and then inserting your favourite gene, so the engineered form is just a handy vehicle for carrying genes. No need to panic, therefore, if you see a press headline of the “HIV cures cancer” variety: it just means that the human immunodeficiency virus – well and truly disabled – has been used as the gene carrier.

93. Fig. 2

Genetic modification of blood lymphocytes

T cells are isolated from a blood sample and novel genes inserted into their DNA. The engineered T cells are expanded and then infused into the patient.

 This method of re-directing T cells to a desired target was pioneered by Gideon Gross and colleagues at The Weizmann Institute of Science in Israel in the late 1980s and it has led to sensational recent results in treating chronic lymphocytic leukemia (CLL), albeit in just a few patients so far. To the fore have been Renier Brentjens and his group from the Memorial Sloan-Kettering Cancer Center, New York. The genetic modification they used made the patient’s T cells express an artificial receptor on their surface (called a chimeric antigen receptor). This T cell receptor was designed to stick specifically to a protein known to be displayed on the surface of CLL cells. The result was that the T cells, originally unable to ‘see’ the leukemic cells, now homed in on them with high efficiency. Astonishingly, and wonderfully, the modified cells divide in the patient so that, in effect, their immune system has been permanently super-charged.

A critical part of the strategy is that CLL cells carry a known molecular target but the absence of such defined markers for most cancers is currently a severe limitation. On the bright side, however, this type of gene therapy has now been attempted in at least three different centres and, despite inevitable minor differences in method, it clearly works.

One of the leading figures in gene therapy is Carl June of the University of Pennsylvania. Some of his colleagues have made a brilliant video explaining how it works whilst June himself has described in wonderfully humble fashion what it means to work in this field.

References

Rosenberg, S.A. and Restifo, N.P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62-68.

Gross, G., et al. (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptorswith antibody-type specificity. Proc. Natl. Acad. Sci. U.S.A. 86, 10024–10028.

Brentjens, R.J., et al. (2013). CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med., 5, 177ra38. DOI:10.1126/scitranslmed.3005930.

Kalos, M., et al. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73.

Kochenderfer, J.N., et al. (2012). B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood 119, 2709–2720.

 

Self Help – Part 1

It’s not easy to find good things to say about cancer and humour is equally elusive, as those of us who lecture on the subject know very well. But most people are aware of one cheering fact: cancers aren’t transmissible between humans – that is, they’re not like ’flu, venereal diseases and lots of other nasty things we pass around. Thus, if you transplant tumours from one animal to another of the same species (usually mice) generally they don’t grow – in much the same way that transplanted organs (livers, etc.) are rejected by the recipient’s immune system. Transplant rejection occurs because the body mounts an immune response to the foreign (i.e. ‘non-self’) organ: transplantation works when that is reduced by matching donor to recipient as closely as possible and combining that with immunosuppressant drugs.

But here’s an obvious thought: if tumours transferred between animals don’t grow, their immune systems must be doing a pretty good job of recognizing them as ‘non-self’ and killing them off. If that’s true, how about trying to boost the immune response in cancer patients as a therapeutic strategy? It’s such a good idea it’s become the trendiest thing in cancer science, the field being known as immunotherapy.

Immunotherapy

The aim is to give a patient’s immune response a helping hand so it can kill their tumours. The stars of the show are a subset of white blood cells called T lymphocytes: that’s because some of them have the power to kill – they’re ‘cytotoxic T cells’. So the simple plan is to boost either the number or the efficiency of these tumour-killing T cells. The story is complicated by there being lots of sub-types of T cells – most notably T Helper cells (that do what their name suggests: activate cytotoxic T cells) and Suppressor T cells that shut down immune responses.

To get the hang of immunotherapy we need only focus on ways of boosting T Helpers but in passing we can hardly avoid asking “why so complicated?” Well, the immune system has evolved on a tight-rope, trying on the one hand to kill invading organisms whilst, on the other, leaving the cells and tissues of the host untouched. It works amazingly well but it can fall off both ways when either it’s overcome by the genomic gymnastics of cancer or when it exceeds its remit and causes auto-immune diseases – things like type 1 diabetes in which the immune system destroys the cells in the pancreas that make insulin.

Shifting the balance

We’ve seen that T cells (of all varieties) are among the ‘groupies’ attracted to the scene of growing solid tumours (in Cooperative Cancer Groupies and Trouble With The Neighbours) and so the name of the game is how to tweak the balance in that environment towards more efficient tumour cell killing.

Broadly speaking, there are two forms of cancer immunotherapy. In one T cells are removed from the patient, grown to large numbers and then put back into the circulation – called ‘adoptive cell therapy’, we’ll come to it in Part 2. The more widespread approach, sometimes called ‘checkpoint blockade’, uses agents that block inhibitory pathways switched on by tumours – in effect releasing molecular brakes that prevent T cell hyperactivity and autoimmunity. So ‘checkpoint blockade’ is a systemic method – drugs are administered that diffuse throughout the body to find their targets, whereas next time we’ll be talking about ‘personalized medicine’ – using the patient’s own cells to fight his cancer.

There’s one further method – viral immunotherapy – which I wasn’t going to mention but has been in the news lately to the extent that I feel obliged to make a trio with “Blowing Up Cancer” to follow Parts 1 & 2.

There’s nothing new about this general idea. Over 100 years ago the New York surgeon William Coley noticed that occasionally tumours disappeared when patients accidentally picked up post-operative bacterial infections and, from bugs grown in the lab, he made extracts that, injected into solid tumours, caused about one in ten of them to regress, with some patients remaining well for many years thereafter.

A new era

Even so, it took until 1996 before it was shown that blocking an inhibitory signal could unleash the tumour killing power of T cells in mice and it was not until 2011 that the first such agent was approved by the U.S. Food and Drug Administration for treating melanoma. In part the delay was due to the ‘agent’ being an antibody and the time taken to develop ‘humanized’ versions thereof. Antibodies (aka immunoglobulins) are large, Y-shaped molecules made by B lymphocytes that bind with high specificity to target molecules – antigens – humanized forms being engineered so that they are made almost entirely of the human protein sequence and therefore do not provoke an immune response.

92 FigCheckpoint Blockade Activates Anti-Tumour Immunity

Interactions between Receptors A and a suppress T cell activity. Antibodies to these receptors block this signal and restore immune activity against tumour cells.

Unblocking the block

We picture the tumour microenvironment as a congregation of various cell types with chemical messengers whizzing to and fro between them. In addition, some protein (messenger) receptors on cell surfaces talk to each other. The receptors themselves become messengers thus drawing the cells together – essential to bring killer cells into contact with their target. You can think of all these protein-protein interactions as keys inserting into locks or as molecular handshakes – a coming together that passes on information. Antibodies come into their own because they bind to their targets just as avidly as the normal signaling molecules – so they’re great message disruptors.

The sketch shows in principle how this works for two interacting receptors, A and a. The arrival of a specific antibody (anti-A or anti-a) puts a stop to the conversation – and if the upshot of the chat was to decrease the immune response, bingo, we have it! Targeting a regulatory pathway with an antibody enhances anti-tumour responses.

Putting names to targets, CTLA-4 and PD-1 are two key cell-surface receptors that, when engaged, trigger inhibitory pathways and dampen T-cell activity. Antibodies to these (ipilimumab v. CTLA-4; pembrolizumab and nivolumab v. PD-1) have undergone a number of clinical trials and the two in combination have given significant responses, notably for melanoma. So complex is immune response control that it presents many targets for manipulation and a dozen or so agents (mostly antibodies) are now in various clinical trials.

Déjà vu

So the era of immunotherapy has well and truly arrived but, as ever with cancer, it is not quite time to break open the champagne and put our feet up. Whilst combinations of antibodies have given sustained responses, with some patients remaining disease-free for many years, at the moment immunotherapy has only been shown to work in subsets of cancers and even then only a small fraction (about 25%) of patients respond. My correspondent Dr. Markus Hartmann has pointed out that the relatively limited improvements in survival rates following immunotherapy might be significantly enhanced if we took into account the specific genetic background of patients and determined which genes of interest are expressed or switched off. This information should reveal why some patients benefit from immunotherapy whilst others with clinically similar disease do not.

The challenge, therefore, is to characterise individual tumours and their supporting bretheren in terms of the cell types and messengers involved so that the optimal targets can be selected – and, of course, to make the necessary agents. It’s a tough ask, as the sporting fraternity might put it, but that’s what science is about so onwards and upwards with William Coley’s words of 105 years ago writ large on the lab notice board: “That only a few instead of the majority showed such brilliant results did not cause me to abandon the method, but only stimulated me to more earnest search for further improvements in the method.”

I’m grateful to Dr. Markus Hartmann  (Twitter: @markus2910) for constructive comments about this post.

References

Coley, W. B. (1910). The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine  3, 1-48.

Twyman-Saint Victor, C. et al. (2015). Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377.

Wolchok, J.D. et al. (2013). Nivolumab plus Ipilimumab in Advanced Melanoma. N. Eng. J. Med., 369, 122-133.

Slip-Slop-Slap Is Not Enough

I’ve always credited Richie Benaud, the wonderful Australian cricketer and commentator, with the Slip-Slop-Slap slogan (I know – it was really thought up by some bright spark in Cancer Council Victoria who got Sid Seagull to sing it). But Mr. B ingrained it into cricket lovers world-wide as a mantra for preventing them getting skin cancer (slip on long sleeved clothing, slop on sunscreen and slap on a hat, you see) – the main preventable cause of melanoma being excessive exposure to ultraviolet (u.v.) radiation, most of which comes from the sun. And maybe it worked for the cricket fraternity who are, by definition, very smart cookies. Unfortunately in Australia the number of new cases of melanoma – the most lethal form of skin cancer – goes on increasing (over 11,000 in 2008) and it’s a serious UK problem too with 13,000 new cases in 2012 (the second most common cancer in 15 to 35 year olds) and over 2,200 deaths.

     

Avoid sunburn …                     Play cricket …                     … for Cambridge!!

Finding a major melanoma mutation

In 2003 sequencing of the human genome was completed and it wasn’t long before Mike Stratton and his colleagues at The Sanger Centre near Cambridge had applied the knowledge and methods of that great triumph to melanoma – a form of cancer about which virtually nothing was known in terms of its molecular biology. They made the remarkable finding that a mutation in a gene called BRAF switched on a signal pathway that drove cell proliferation in about two-thirds of melanomas. Remarkable because that gene had not previously been associated with any cancer. Even more amazingly, within a few years drugs had been developed that targeted BRAF and caused substantial regression of tumours that had spread (metastasized) in patients.

Like all cancers, melanoma is not caused by one mutation and other ‘drivers’ have since been identified – which was a bit of a relief because a perplexing thing about BRAF is that the mutation that turns it on is not the kind of genetic change caused by u.v. radiation. So the link between radiation, BRAF and melanoma is explained in most cases by u.v. exposure damaging a variety of genes which then act together with mutant BRAF to promote the disease.

Black, red & white mice

A different complexion

Clear so far? Good – but you will know that cricket and cancer have in common the fact that they are both a deal more complicated than they appear to the uninitiated. The first quirk of melanoma is that folk of fair complexion or with red hair or freckles are more at risk. The wide variation in human colouration is controlled by two forms of a pigment called melanin (pheomelanin and eumelanin). A key regulator of the balance between the two is a signalling system – a messenger talks to its receptor on the cell surface telling the cell to make more eumelanin. Upset this system and the balance is disturbed – you get redder because you make relatively more pheomelanin.

Mouse models

It’s possible to make a mouse model of human redheads (you shouldn’t be surprised: remember mice have more or less the same number of genes as us, including one that makes the receptor that controls redness). So some bright sparks in the US of A have done just that by mutating the mouse receptor – with interesting results. When the ‘red’ mice were bred with animals carrying the mutated BRAF gene associated with melanoma in humans, many develop exactly the same type of cancer – whereas black mice (lots of eumelanin) and white mice (who can make neither of the pigments) have very low rates of melanoma. And, of course, it was important in these experiments that the mice weren’t allowed to nip off to sunbathe and watch cricket – i.e. they were kept in a u.v.-free environment.

What this shows is that red mice (and by extension, their human counterparts) can get melanoma by some means that doesn’t involve u.v. It may be that eumelanin protects DNA from two forms of assault: it not only absorbs sunlight but also limits the effect of chemicals produced within the body that can mutilate our DNA.

Whatever the mechanism, Richie is right as usual: we should continue to Slip-Slop-Slap because too much catching the rays can cause melanoma – especially in fair, freckled red-heads. But that isn’t the full story and the imperfections of our bodies mean that we can develop this cancer from within as well as without.

Reference

Mitra, D., Luo, X., Morgan, A., Wang, J., Hoang, M.P. (2012). An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491, 449–453.

http://www.nature.com/nature/journal/v491/n7424/full/nature11624.html

Unkinking Kindle

In response to a wonderfully appreciative email about the book I’m posting the pictures (some in colour!!) because the reader couldn’t get Kindle to show them – although my publisher’s digital book manager cannot find any problem with the files.

Photographs (Plates 1 to 10) in Betrayed by Nature:

Plates 1 and 2

Plates 3 and 4

Plate 5

Plate 6

Plate 7

Plate 8

Plate 9

Plate 10

A Ray of Sunshine

One of the fascinating things about cancer is that it touches every aspect of biology. Of course, most will know that it’s caused by mutations – changes in the material that carries our genetic code. But many influences play on the genetic keyboard of DNA and those that are part of the world around us are a very mixed bunch. In Betrayed by Nature I split them into two: those we can do something about and the rest. The latter includes radiation from the ground… it’s all around us, we’ve evolved bathed in it and, apart from not living where the levels of radon are particularly high, there’s nothing we can do about it – so just forget it.

At the other end of the spectrum, so to speak, comes sunshine. We’ve evolved with that too – indeed we wouldn’t be here without it. Aside from driving photosynthesis in plants, humans use the radiant energy of the sun to make vitamin D (sometimes called the “sunshine vitamin”). Vitamin D deficiency is one cause of the childhood bone defect rickets, a condition that has reappeared in the UK in recent years because some kids are seeing less of the sun. So for humans catching the rays is desirable but we teeter along a sunny tightrope between what we need and what may ultimately be fatal. The risk comes from the ultra violet component of sunlight – radiation that has sufficient energy to damage DNA directly, making it a mutagen that can cause cancer. The cancer in question is, of course, melanoma that develops from abnormal moles on the skin. The global incidence of melanoma is increasing and, in the UK, about 90% of cases are estimated to be linked to exposure to ultra violet light. To most folk this means sunshine but those so inclined can walk the tightrope horizontally by using sunbeds (incredibly, in 1999 Cancer Research UK found that a quarter of men and a third of women questioned said they’d used a gizmo of this sort in the previous six months).

Which goes to show that human beings seem unable to resist the pursuit of the unattainable. The fair skinned think it cool to be darker whilst pharmaceutical giants are apparently making pots from selling creams to Indian ladies on the pitch that they will lighten their skin!

… and not so good

Good rays …

With a sigh for humanity let us pass from risks we take for no reason other than vanity or stupidity to those we may feel obliged to take as the lesser of two awkward options. There’s almost no chance that anyone reading this hasn’t had an X-ray of some sort. We have them to give our dentist a precise guide to the cause of our agony, rather than have him solve the problem by a series of trial and error excavations, or to tell our orthopaedic surgeon how best to go about piecing together the results of our latest stress-test on the human frame. We know X-rays are bad for us – they’re even more energetic than ultra violet radiation, so they’re a super-mutagen. Waves of cancer you might say.

So the issue here is one of choice. It’s a bit like a general anaesthetic: they do tend to make you throw up and about one in every 100,000 is fatal but, confronted with surgery, which would you vote for: a whiff of halothane or the offer of a slug of whisky and a rag to bite on? Computed tomography (CT) is an alternative application of X-rays but, instead of a single shot giving a two-dimensional image, CT acquires a large number of such images, taken as the radiation beam moves through the body, to give a 3-D picture. This can represent whole organs, and it has become an immensely powerful diagnostic tool since its introduction in the early 1970s. However, there’s no advance without anguish, and the additional information provided by a CT scan requires much more radiation than a traditional X-ray (typically 10 millisievert (mSv) compared with about 0.04 mSv for a chest X-ray). As our annual dose of “unavoidable” natural radiation is about 3 mSv it’s probably safe to say that these medical exposures are not a serious hazard – although babies in the womb are particularly sensitive to radiation. Even so, there are estimates that about 1% of USA cancers are due to CT scans, although there is no evidence that doses below 100 mSv induce tumours in animals.

A new study has enlarged the picture by finding that CT scans of children under 15 may increase the risk of leukemia and brain cancer. Three-fold increases were estimated for acute lymphoblastic leukaemia as a result of five to ten scans and for brain tumours by two or three scans. This sounds somewhat scary but it’s worth noting that these diseases are very rare in children. In the UK the incidence in under-20 year olds is just over four per 100,000 of leukemia – slightly less for brain or central nervous system cancers.

So the evidence indicates a small increase in an already low level of risk. As ever in life, therefore, it’s a matter of balance. The sensible advice for children (and everyone else for that matter) is not to have CT scans unless they are likely to provide critical clinical information that cannot be obtained by other means, for example, ultrasound or conventional X-rays.

Reference

Pearce, M.S., Salotti, J.A., Little, M.P., McHugh, K., Lee, C., Kim, K.P., Howe, N.L., Ronckers, C.M., Rajaraman, P., Craft, A.W., Parker, L. and de González, A.B. (2012). Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet 380, 499–505.