New Era … Or Déjà vu?

 

Readers who follow events in the US of A – beyond the bizarre unfolding of the selection of the Republican Party’s nominee for President of the United States – may have noticed that the presidential incumbent put forward another of his bright ideas in the 2016 State of the Union Address. The plan launched by President Obama is to eliminate cancer and to this end $1 billion is to go into a national initiative with a strong focus on earlier detection, immunotherapy and drug combinations. It’s called a Moonshot’, presumably as a nod to President Kennedy’s 1961 statement that America should land a man on the moon (and bring him back!).011316_SOTU_THUMB_LARGE

A key aim of Moonshot is to improve all-round collaboration and to ‘bring about a decade’s worth of advances in five years.’ Part of this involvesbreaking down silos’ – which apparently is business-speak (and therefore a new one on me) for dealing with the problem of folk not wanting to share things with others in the same line of work. So someone’s spotted that science and medicine are not immune to this frailty.silo_mentality

On the home front …

In fact the President could be said to be slightly off the pace as, in October 2015, Cancer Research UK launched ‘Grand Challenges’ – a more modest (£100M) drive to tackle the most important questions in cancer. They’ve pinpointed seven problems and, helpfully, six of these will not be new to dedicated readers of these pages. They are:

  1. To develop vaccines (i.e. immunotherapy) to prevent non-viral cancers;
  2. To eradicate the 200,000 cancers caused each year by the Epstein Barr Virus;
  3. To understand the mutation patterns caused by different cancer-causing events;
  4. To improve early detection;
  5. To map the complexity of tumours at the molecular and cellular level;
  6. To find a way of targetting the cancer super-controller MYC;
  7. To work out how to target anti-cancer drugs to specific cells in the body.

{No/. 2 is the odd one out so it clearly hasn’t been too high a priority for me but we did talk about Epstein Barr Virus in Betrayed by Nature – phew!}.

But wait a minute

Readers of a certain age may be thinking this all sounds a bit familiar and, of course, they’re right. It was in 1971 that President Richard Nixon launched the ‘war on cancer’, the aim of which was to, er, to eliminate cancers. Given that 45 years on in the USA there’ll be more than 1.6 million new cases of cancer and 600,000 cancer deaths this year, it’s tempting to conclude that all we’ve learned is that things are a lot more complicated than we ever imagined.

Well, you can say that again. Of the several hundred genes that we now know can play a role in cancers, two are massively important MYC (‘mick’) and P53. Screen the scientific literature for research publications with one of those names in the title and you get, wait for it, over 50,000 for ‘MYC’ and for P53 over 168,000. It’s impossible to grasp how many hours of global sweat and toil went into churning out that amount of work – and that’s studies of just two bits of the jigsaw!

So 45 years of digging have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and cancer rates remain below 5% 1%, respectively. For these and other cancers there has been very little progress.

So 45 years of digging away have yielded astonishing detail of the cellular and molecular biology – and that basis will prove essential to any rational approach to therapy. It’s a slow business this learning to walk before you run! But we can be rather more up-beat. Alongside all the science there have come considerable improvements in treatments. Thirty years ago one in four of those diagnosed with a cancer survived for more than 10 years. Now it’s almost one in two. But it’s a hugely variable picture: for breast cancer the 10 year overall survival rate is nearly 80% and for testicular cancer it’s over 98%. However, for lung cancer and pancreatic cancer rates remain below 5% and 1%, respectively. For these and other cancers there has been very little progress.

All systems go?

Well, maybe. Moonshot is aimed at better and earlier diagnosis, more precise surgery and radiotherapy, and more drugs that can be better targeted. Oh, and bearing in mind that one in three cancers could be prevented, keeping plugging away at lifestyle factors.

How will it fare? Well, now we’re in the genomic era we can be sure that the facts mountain resulting from 45 years of collective toil will be as a molehill to the Everest of data now being mined and analysed. From that will emerge, we can assume with some confidence, a gradual refinement of the factors that are critical in determining the most effective treatment for an individual cancer.

Just recently we described in The Shape of Things to Come the astonishingly detailed picture that can be drawn of an individual tumour when it’s subjected to the full technological barrage now available. As we learn more about the critical factors, immunotherapy regimens will become more precise and the current response rate of about 10% of patients will rise.

Progress will still be slow, as we noted in The Shape of Things to Come – don’t expect miracles but, with lots of money, things will get better.

Advertisements

Twenty more winks

In Episode One we alerted ourselves to the large amount of evidence saying that a good night’s sleep really is essential if you wish to reduce your chances of a wide variety of medical misfortunes. But what do we know about how molecules respond to sleep disruption to produce such nasty effects?

Molecular Clocks

Life on earth depends on energy sent forth by the sun and, in synchrony with the rotation of our planet, many of the inner workings of mammals fluctuate over each period of roughly 24 hours. This pattern is called the circadian clock, its most obvious manifestation being the sleep-wake cycle. Over the years considerable evidence has accumulated that the link between shift-work and cancer is probably due to circadian rhythm disruption and suppression of nocturnal production of a hormone called melatonin. All living things make melatonin (in mammals in the pineal gland of the brain) and it signals through a variety of protein receptors on cells to regulate the sleep-wake cycle but it also plays a role in protecting DNA from damage.

Melatonin production is regulated by the circadian oscillator, itself controlled by two sets of proteins that control each other’s expression in a feedback loop. Thus one pair, CLOCK and BMAL1, activates Cryptochrome and Period. They in turn repress CLOCK and BMAL1 – the upshot being that the activities of both pairs oscillate over a day-night cycle: as one goes up the other comes down. These central regulators are encoded by evolutionarily ancient genes (two for Cryptochromes and three for Period proteins). In plants and insects CRY1 responds to light but in mammals CRY1 and CRY2 work independently of light to inhibit BMAL1-CLOCK.

Two interlocked feedback loops control clock protein expression

CRY-CLOCK

OUTCOME: ≈ 24 hour cycle expression of PER & CRY

BMAL1 & CLOCK 12 hours out of phase

Alarming the Clock

So having sounded the alarm that just one night’s sleep shortage has obvious effects, what do the genes make of it? Well, the short answer is they get upset. A recent study took blood samples from a group of normal people and found that more than 700 genes (about 3% of our total number) significantly changed their level of expression over 1 week of insufficient sleep (5.7 h) by comparison with 1 week of sufficient sleep (8.5 h). About two-thirds were reduced whilst one-third was up-regulated (made more of their protein product). Unsurprisingly, among those that went down were the major clock regulators. It’s worth noting that the sleep perturbation in this experiment was relatively mild – intended to be similar to that experienced by many individuals. The genes most strongly affected play roles in a wide range of biological processes – DNA structure (hence gene expression), metabolism, stress responses and inflammation. The responses of genes to changes in sleep patterns are not the result of mutation (i.e. changes in the sequence of DNA)  but, at least in part, they’re caused by small changes in the structure of DNA. {These are epigenetic modifications – any modification of DNA, other than in the sequence of bases, that affects how an organism develops or functions. They’re brought about by tacking small chemical groups either on to some of the bases in DNA itself or on to the proteins (histones) that act like cotton reels around which DNA wraps itself}. Thus there is evidence for gene silencing by hyper-methylation of CRY2 (adding methyl groups (CH3) to its DNA) and the converse effect of hypo-methylation (removing methyl groups) of CLOCK occurs in women engaged in long-term shift work and is associated with an increased risk of breast cancer.

Inflaming the Problem

The cells that mediate inflammation and immune responses also have circadian clocks – meaning that normally these processes are rhythmically controlled and clock disruption (for example by sleep loss) affects this pattern. Disabling the clock in mice (by knocking out CRY altogether) switches on the release of pro-inflammatory messengers and knocking out one of the Period genes (PER2) makes mice cancer-prone – reflecting the fact that MYC (the key proliferation driver) is directly controlled by circadian regulators and is consistently elevated in the absence of PER2.

Clock Faces

The mass that comprises a tumour is a mixture of cells – cancer cells and normal cells attracted to the locale – so it’s a quite abnormal environment and in particular there may be regions where the supply of oxygen and nutrients is limited. This is sensed as a stress by the cells, one response being to lower protein production until normal conditions are restored. If this doesn’t happen within a given time the response switches to one leading to cell suicide. One way in which overall protein output can be reduced is by activating an enzyme (IRE1α) that breaks down code-carrying messenger RNAs that direct assembly of new proteins. Remarkably, it has emerged that one of the mRNAs targetted by IRE1α is the core circadian clock gene, PER1. The degradation of PER1 mRNA means that less PER1 protein is made, which in turn disrupts the clock. However, it seems that PER1 has other roles that include helping the cell suicide response – a major anti-cancer defence. All of which suggests that disruption of the IRE1α/ PER1 balance might have serious consequences. Indeed IRE1α mutations have been found in a variety of cancers including brain tumours in which low levels of PER1 are an indicator of poor prognosis. The IRE1α mechanism coincidentally activates the transcription factor XBP1 (as well as PER1 mRNA decay) and one target of XBP1 is the gene encoding a messenger (CXCL3) that makes blood vessels sprout offshoots. Thus this master regulator suppresses cell death, activates proliferation (lowering PER1 deregulates MYC) and promotes new blood vessel formation.

A Tip for Snoozing

If you’re still wide awake it just goes to prove the utter fascination of biology – but today’s story says that you have to find ways of, if not falling asleep, at least courting insensibility (as Christopher Fry put it). If it’s a real problem for you may I make a really radical suggestion? Turn to our physicist friends and select from their recent literary avalanche. A ‘brief history of …’ something or other will do fine. It’s a knock-out! Sweet dreams!!

References

Möller-Levet, C.S., Archer, S.N., Bucca, G., Laing, E.E., Slak, A., Kabiljo, R., Lo, J.C.Y., Santhi, N., von Schantz, M., Smith, C.P. and Dijk, D.-J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. PNAS 110, E1132-E1141.

Fu, L.N. et al. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41-50.

Zhu, Y. et al. (2011). Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int, 28, 852–861.

Pluquet, O. et al. (2013). Posttranscriptional Regulation of PER1 Underlies the Oncogenic Function of IREα. Cancer Res., 73, 4732-4743.

Taking the MYC out of cancer

It has been famously said, though no one quite knows who gave first utterance, that England and America are two nations divided by a common language. In deference to readers from the US of A, therefore, we need a word about English before we embark on the current topic. You can get quite a long way in the States on an English accent, partly because the inhabitants are, by and large, very tolerant and cosmopolitan souls and also because they perceive Brits as being rather weird but harmlessly entertaining – at least since they gave up the idea of owning America, signed the Treaty of Paris and slung their hook. But that last phrase is an example of how things can get sticky when you talk to an American audience and it slips your mind that 1783 was quite a long time ago – long enough in fact for a good deal of divergent language evolution. Put another way, use idioms unthinkingly and you can die the death – leaving your listeners wishing that you would indeed sling your hook (American translation: beat it). One of the odder things about this linguistic separation is that American doesn’t have a good phrase that means gently making fun of someone. You can pull a Yankee leg it is true and you may mess them about – but that one’s really fraught as it carries a different innuendo in English. So it’s a pity that over there you can’t extract the Mick, take the Mickey or remove the Michael. It’s deeply regrettable that this phrase probably owes its origins to Cockney rhyming slang referring to the act of urination but strawberries grow in manure and all that. Similar pratfalls work in the other direction, of course, and British audiences are likely to look blank if you mention your keister: start talking about booty and mussing with someone and they’ll really be baffled.

To the current topic. We saw in Mission Impossible that many different pathways pass signals saying ‘grow’ from the outside world to the nucleus at the centre of a cell. Many of these relays use RAS proteins – they’re a major junction in the cellular network so they’re a very tempting target for disruption of signaling. But if all roads lead to Rome, so to speak, is there not an even better target – a main gate, the critical portal through which everything that drives cell proliferation must pass? There is and it’s called MYC (pronounced ‘mick’ – Ah! Now all is clear!!), the gene encoding a protein of the same sound that is a unique master regulator. MYC coordinates the expression of a large panel of genes involved in cell growth and division – it’s essential for cell proliferation.

 MYC pic

Cell signaling. Many messengers turn on lots of relays that focus on the nucleus telling cells to grow and divide. The MYC protein is a master coordinator.

But there’s an obvious problem: to survive we need to make new cells all the time – about one million every second, just to maintain the status quo. It seems hardly worth pointing out that if you gave someone a drug that blocked MYC it would be fatal: the body simply couldn’t survive for very long with a blocked cell production line. Indeed it’s been known for some time that knocking out the MYC gene in mice is fatal: they fail to develop beyond an early embryonic stage. And yet there’s a huge temptation to ask ‘What would inhibiting MYC do to tumors: might it actually kill them?’ – a curiosity fuelled by the knowledge that MYC is deregulated in most – perhaps all – cancers. That is, an almost invariable upshot of the mutation patterns found in tumors is that excessive amounts of MYC protein are made – and, as it drives cells round the cell cycle and into division, more MYC equals abnormal cell growth, aka cancer.

So, in an experiment that all logic said would not work, Gerard Evan and his colleagues in San Francisco and Cambridge devised a way to switch on an inhibitor of MYC in transgenic mice to ask the unaskable: ‘Is blocking MYC fatal and, if is isn’t, what does it do to tumors?’ The method is to use a trick of genetic engineering to give mice a novel gene that is switched on by dosing them with a drug added to their drinking water. Omitting the drug switches it off. The gene encodes a protein that sticks to the MYC protein and prevents it from interacting with its normal partner so that the dynamic duo that drives cell growth can’t be formed.

The results were startlingly dramatic. First of all, MYC blockade didn’t kill the mice although it certainly had some effects. A shaved patch of fur doesn’t re-grow quickly as it normally would and males become infertile because they can’t make new sperm. But the mice aren’t aware of these little problems and in general are as full of beans as their chums with normal levels of MYC activity – and in any case these mild effects are reversible. Switch off the MYC block and they return rapidly to normal.

That was surprising enough but the really staggering result came from introducing the MYC blockade into mice that develop lung tumors (driven by the expression of a mutant RAS gene). Inhibition of MYC has an almost immediate effect on tumor size: tumors regress and the side effects remain mild and reversible. A single burst of MYC blockade results in a significant extension of life span for tumor-bearing mice. Even more remarkable, successive episodes of MYC inhibition (a ‘metronomic’ regime) leads to the gradual eradication of the tumors – and the elimination of lung cancer means that the mice now have a normal life span.

It should be emphasized that so far this has only happened in mice and the Appian Way of cancer therapy is littered with the corpses of brilliant ideas that worked a treat in those wonderful little models but were utterly useless when it came to humans. However, science is the practice of eternal optimism and there are sound grounds for hope here. Switching a gene on and off by genetic engineering is fine in mice. It won’t do for us but already some small molecule inhibitors have been made that appear to work in mice. The hope is that both the anti-cancer effect and the mild side-effects will be recapitulated in humans – and that, because all pathways do indeed lead to it, taking the MYC out of cancer will kill tumours. Then the really optimistic bit – that even crafty cancer cells will be unable to find a way round such a block. Because all proliferation signals lead to MYC there will be no adaptive mechanism to which cells can turn to ensure their survival.

In short, the tumour will be stuffed – which rather brings us back to where we started except that, having taken the MYC, this needs no translation.

Reference

Soucek, L., Whitfield, J.R., Sodir, N.M., Massó-Vallés, D., Serrano, E., Karnezis, A.N., Swigart, L.B. and Evan, G.I. (2013). Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev., 27, 504-513.

Powdering Your Nose and Other Parts

If you were asked ‘What is the worst thing about being a research scientist?’ you might well come up with ‘Feeling stupid every day’ – especially if you’d read Martin Schwartz’s wonderfully funny and incisive essay ‘The importance of stupidity in scientific research’ pointing out that research means battling with the unknown. Bad though that is, I can tell you, on the basis of collecting absolutely no data whatsoever, that 100% of scientists would answer ‘Literature’ – or to be slightly more expansive ‘Keeping up with published research.’ To give the rest of mankind a feel for their problem, suppose you work on a gene called MYC which is one of the most powerful cancer drivers: the Web of Knowledge database lists 3,839 hits for MYC as a topic and 468 with it in the title (which means you really ought to read those papers!). So far this year! That’s six months  worth!!

Dusting down the literature

Broadly speaking, scientific literature comes in two categories: a huge one that you might call worthy but dull and a tiny one to which you ought to say ‘Wow!’, that is, there’s some amazing revelation about the way life works, a brilliantly clever method or some stunning insight. But there are two other small classes of which we rarely speak. One is, of course, stuff that is poor (or worse still plagiarized) and should never have been published. The other is perfectly OK – indeed you might even say ‘good someone’s done it’ – it’s just that your heart sinks when you see the title because you know what’s in store.

talc-powder

My latest heart-sinker is a zippy little thing called Genital powder use and risk of ovarian cancer: a pooled analysis of 8,525 cases and 9,859 controls and it has that effect because the title tells all. They’ve tackled a question that’s been around for 30 years, namely whether applying talcum powder to the nether regions can cause cancer of the ovaries, by pulling together data from separate studies with mixed conclusions, so that a kind of average emerged from the haze as a modest increased risk.’

What’s my problem?

Being certain that such a title will be picked up by the press and reported in a misleading and over-hyped fashion. Step forward the MailOnline (Women who regularly use talcum powder to keep fresh raise their risk of ovarian cancer by almost a quarter SHOCK HORROR!!). OK, I added the last two words but they were there by implication. It has to be admitted that the scientists didn’t help by calculating Odds Ratios (the ratio of the odds of an event occurring in one group to the odds of it occurring in another group), with the inevitable result that they were interpreted as ratios of risks, which overestimates the effect. However, if journalists actually bothered to read the papers they latch on to, it might occur to them that a balanced picture might be conveyed by quoting what the scientists themselves said. In this case the odds ratio was 1.24 which they summarized as ‘Genital powder use was associated with a modest increased risk of epithelial ovarian cancer.’ It would also help the non-scientist reader to put things into context by, in this case, noting that for ovarian cancer the average lifetime risk is about 1.4%. Thus even if you did have an increase of one quarter, the risk is still less than 1.8%.

The ordinary reader might also appreciate a comment on some of the problems faced by such studies. Not the least of these is that they are retrospective (i.e. they asked folk to recall what they used, when and how). It’s not difficult to be skeptical about the precision of the responses, especially when you’re tiptoeing around in what might be called delicate areas, and that’s before you mention the different wording in each study of questions that were pretty convoluted anyway. It’s also worth noting that the analysis showed no increase in risk with prolonged use, which is a little odd (recall that for smoking the more you do it the higher your chances of lung cancer).

Anything else worth adding?

Talcum powder, for this is what we’re talking about, is made from talc which is mostly magnesium, silicon and oxygen and the powder is, of course, widely used because it absorbs moisture and reduces friction, helping to keep skin dry and rash-free. Asbestos, another silicate, occurs together with talc in nature, and it causes the form of lung cancer called mesothelioma. Before 1976, talcum powder was commonly contaminated with asbestos but since the 1970s talcum products have been asbestos-free. There is evidence both in humans and rodents that talc particles can travel up through the genital tract and alight on the surface of the ovaries. Such particles can cause inflammation, one way in which cancer development can be set off, but there is no evidence that talc does promote ovarian cancer in this way.

Ideally in looking for cause and effect, scientists like to get a handle on mechanism. Somewhat surprisingly, for an effect that is modest at most, there is the glimmering of a lead. It comes in the form of a family of enzymes that can detoxify carcinogens (they’re glutathione S-transferases) but the genes encoding two of them, GSTM1 and GSTT1, are missing in about 50% and 20% of Caucasians respectively – so, of course, their activity is lost. There is one study showing that women with GSTM1-present and GSTT1-missing have a stronger association between talc use and ovarian cancer risk. The number of cases is small and it is possible that the effect is not real. It’s also not at all clear how the actions of this combo might interact with the effects of talc. Nevertheless, it is striking that it’s the only pairing of these two genes that shows an association.

What’s a girl to do?

1. Don’t read anything by a journalist that talks about Odds Ratios because the odds are they won’t have a clue what they’re on about.

2. Do read Thou Shalt Not Report Odds Ratios’, Mark Liberman’s witty but brutal evisceration of two ‘science editors’, Mark Henderson of the London Times and Steve Connor of the Independent newspaper.

3. Note that the authors of this study say that genital powder exposure is associated with a ‘small-to-moderate increased risk.’ – nothing stronger than that.

4. Remember that there’s no evidence that talcum powder applied anywhere other than the genital area can cause any problems and that includes the lungs. Even rats forced to inhale talc for 6 hours a day, five days a week for over two years were reluctant to get lung cancer although the incidence did increase in females (maybe they were just trying to escape the Dickensian smog ‘Strewth guvnor, I ’ardly get to see the nippers these days: may as well end it all by getting lung cancer’).

5. Bear in mind that the International Agency for Research on Cancer (IARC) classifies talc-based body powder as a class 2b carcinogen “possibly carcinogenic to human beings.”

6. Be aware that the major factors increasing the risk of ovarian cancer are (1) increasing age, (2) family history of breast or ovarian cancer, (3) being overweight and (4) hormone replacement therapy, whilst having children and breastfeeding them as well as taking the pill reduce the risk.

7. Finally, if the possibility of a slight increase in a small risk really spooks you, avoid orifice powdering and let nature take care of things. Or, if you’re really desperate for friction-free movement, use cornstarch powder: it’s a carbohydrate and there’s absolutely no evidence that it is a risk factor for ovarian cancer.

References

Terry, K.L., Karageorgi, S., Shvetsov, Y.B. et al. (2013). Genital powder use and risk of ovarian cancer: a pooled analysis of 8,525 cases and 9,859 controls. Cancer Prevention Research Published OnlineFirst June 12, 2013.

http://www.dailymail.co.uk/health/article-2343974/Women-regularly-use-talcum-powder-increase-risk-ovarian-cancer-24.html

Gates, M.A., Tworoger, S.S., Terry, K.L. et al. (2008). Talc use, variants of the GSTM1, GSTT1, and NAT2 genes, and risk of epithelial ovarian cancer. Cancer Epidemiology Biomarkers & Prevention 17, 2436-2444.

http://itre.cis.upenn.edu/~myl/languagelog/archives/004767.html