Scattering the Bad Seed

Cancers are very peculiar diseases. One of their fairly well-known oddities is that, by and large, it’s not the initial tumour that does the damage – rather that the vast majority of fatalities arise from its offshoots, secondary growths formed by cells escaping from the primary and spreading around the body, a diaspora called metastasis. That ‘vast majority’ is actually over 90% – so you might suppose most research effort would be focussed on how cells disseminate and what can be done to stop them in their tracks, whilst leaving the surgeons to deal with the primaries. But like many other things in life, logic plays a limited part in research strategy and to a great extent the boffins do what they fancy – or, to make it sound a bit more rigorous, what they feel is possible given the available tools. Which is perfectly reasonable: launching a project to build a radio would have been a bit perverse before Michael Faraday discovered electricity. In short, scientific research is all about practicalities – it’s what that great science communicator (and Nobel Prize winner) Peter Medawar called The Art of the Soluble.

Metastasis on the move

We recently recounted the emergence of the notion that cancers could spread around the body and how, by the end of the 19th century, this had led to the idea of ‘seed and soil’ – that cells cast off from primary tumours could drift around the circulation until they found somewhere congenial to drop anchor and set up a new home. That was in Keeping Cancer Catatonic and it was prompted by the fact that for rather more than 100 years metastasis seemed so difficult to get at, so impossible to model, there was virtually no progress and it is only now in the last few years that this critical cancer niche is once again on the move. The really exciting, and surprising, finding has been that, in mouse models, primary tumours dispatch chemical messengers into the blood stream long before any cells set sail. These protein news-bearers essentially tag a landing site within the circulatory system for the tumour cells to follow. And which sites are tagged depends on the type of tumour – consistent with the fact that human cancers show different preferences in metastatic targets.

A further twist is that even if tumour cells manage to follow this complicated guidance system and seed a new site, it’s not a disaster because their growth is suppressed by proteins released from nearby blood vessels. This presumably reflects the fact that tissues have systems to maintain the normal balance – to ensure that unusual things don’t happen – which means that everything is fine until that control is overwhelmed. When that happens other signals convert the dormant tumour into an expanding metastasis.

These very recent discoveries show that, at long last, our ignorance of how tumours spread is beginning to be chipped away and, because metastasis is the critical issue in cancer, this is a timely moment to do one of our crystal clear, simple summaries of what we know – which is relatively easy and will take much less time than if we reviewed our ignorance.

BOOKMARKING copy

Bookmarking cancer: Primary tumours mark sites around the body to which they will spread (metastasize) by sending out chemical signals that create sticky ‘landing sites’ (red protein A) on target cells. Cells released from the bone marrow carry proteins B and C. B attaches to A and tumour cells ‘land’ on C. Cells may remain quiescent in a new site for years or decades, their growth suppressed by signals (e.g., TSP-1) released from nearby blood vessels. Only when appropriate activating signals dominate (e.g., TGF beta) is secondary tumour growth switched on (see Keeping Cancer Catatonic for more details).

So what do we know?

Tumours arise from the accumulation of (essentially) random mutations and these drive the expansion of a family of cells to the point where they make their presence felt. From that, if the bearer is unlucky, emerges a sub-set of cells with the wanderlust. Cells in which the mutational hand they have acquired confer the ability to escape from the family bosom, chew through surrounding tissue, burrow into nearby blood vessels and thus voyage to distant places around the body. Some of these adventurous fellows may find landing sites where they can stick and, in effect, reverse their escape routine by squeezing through the vessel wall and chomping their way to a new niche in which to set up home. This process is sometimes called ‘colonization’ and it’s a pretty vivid description, evoking images of brave chaps taking on the elements to find a new world in which to prosper. The upshot is a malignant tumour.

I’m sorry for pulling a sciency trick back there by inserting ‘essentially’ – in brackets to persuade you to skim over it as if it was a mild hallucination. We’ll come back to the rivetting explanation of why I’d feel uncomfortable about just saying ‘random mutations’ another day but for the moment just stick with the idea that changes in DNA make cancers.

Tumour cells are not very bright

This sequence is so convoluted that it sounds like the product of some devilish mastermind but in fact we know that the metastatic cell is incapable of thought because otherwise it would have stayed at home. Metastasis is a process so inefficient that it’s almost always fatal for the cell that tries it. Tumour cells that get into the circulation may be damaged in the rush-hour scrum that is cellular life in the bloodstream and be gobbled up by scavenger cells. Even if they do finally squeeze through a space in the wall – feeling they’ve made it – they may have suffered so much stress they’re just not up to producing a family in a new environment that mayn’t be entirely welcoming. So even after reaching a new home they may not survive any longer or just manage to form a small cluster of cells that hang on as a ‘dormant’ tumour – an indolent little outpost that represents no threat to the carrier, even though it may persist for decades. So, despite metastasis being the most life-threatening facet of cancer, the odds are strongly weighted against escaping tumour cells: even after they’ve made it into the circulation, only about one in every ten thousand makes it to a compatible site where it forms an embryonic colony.

How does it kick off?

Given that tumours are products of evolution – albeit on the hugely accelerated time-scale of an individual lifetime rather than the geological frame within which new species emerge – you might suppose that metastases are merely a potent end-product. A tumour cell continues to pick up mutations until eventually it has the required toolkit to burrow and squeeze, float and drift, touch down  on sticky patches, squeeze and burrow again and eventually thrive in a new home. In the best traditions of cancer, however, it turns out not to be like that – at least, as far as is known, no set of mutations defines cells as having acquired the tools of the spreading trade. In short, there’s no ‘genetic signature’ that uniquely marks a metastatic cell. Nevertheless, they are different: only a fraction of primary tumour cells acquire the ability to spread – so if it isn’t simply by picking up an escape kit of changes in DNA, how do they do it?

Making an escape kit

One of the things that does mark metastatic cells is a change in the genes expressed compared to their relatives in the rest of the tumour. That is they alter the pattern of proteins that they make. This switch reorganises the cell’s shape and helps it to move and, most notably, includes enzymes released into the environment that cut a path for the cell to invade its local surroundings en route to the circulation.  As you might guess, this switch in protein production appears to be reversed once a cell has found a new niche. But if this transition into an invasive (i.e. malignant) cell isn’t driven by specific mutations, how does it come about?

The answer seems to lie in a subtle fine-tuning of cell behaviour, rather than dramatic changes caused by mutations in DNA. In other words, cells emerge from the morass of mutations within a tumour with critical signal systems that are just that little bit more active than those of their companions. It’s less a tall poppy syndrome than the odd blade of grass that’s missed the mower and can see a wider world. If this still seems a bit far-fetched, recall that every cell is unique: however identical two cells may be, there will be tiny differences in the signals that control their level of response.  The minuscule edge that can give one cell over another is enough. Given time, it will reproduce to make a clone with the gymnastic ability and stamina required to embark on the fraught experience of founding a metastatic colony.

Spreading variety

One of the fascinating things about cancer is that there seems to be no absolute rules. For every generalization there’s a renegade – a piece of molecular or cellular jiggery-pokery that does it in a different way, often in a breath-taking example of Nature’s flexibility. So it is with metastasis in that, as we noted, different cancers show widely variable behaviour.  Some major types have usually spread by the time they are detected (lung, pancreatic) whereas generally breast and prostate tumours have not. Some forms of brain tumour usually invade locally and are rarely found at distant sites whilst others often metastasize. Sometimes secondary growths are found when the primary source can’t de detected at all – so they’re ‘cancers of unknown primary’ and they’re not uncommon, coming in the top 10% of diagnoses.

Equally bemusing is the range of favoured targets for dissemination. Prostate cancer cells commonly home in on bone whereas bone and muscle tumours often spread to the lungs. Others, however, are much more promiscuous and go for multiple sites (e.g., triple-negative breast cancer, skin melanoma and tumours originating in the lung and kidney). We have little idea what’s behind this variability though it may be a combination of different circulation patterns, capacity to slip through vessel walls and how well-equipped the cell is to survive in new terrain.

Making friends with the neighbours

In Cooperative Cancer Groupies we talked about one of the most recent evolutions in cancer thinking – the notion that tumours are not just made up of clumps of abnormal cells but that their locale becomes flooded with a variety of normal cells as the host mounts first an inflammatory response and then attempts to kill off the intruder through its immune system. When this defence fails and the tumour begins to develop it has succeeded in corrupting the groupies in the microenvironment so that now they send out signals that actively promote tumour growth. This type of local support is similarly critical in determining whether metastases take root, so to speak. Moreover, variation in the precise signals from normal cells between different tissues contributes to target preference for malignant cells.

Not like you see on t.v.

In the currently popular Danish political drama television series called Borgen there’s a scene in which a tabloid newspaper editor is offered a piece by a reputable journalist about the European Union that he rejects. “Don’t try to give me a story about the EU: it’s not sexy and it’s too complicated for our readers to understand.” We will have no truck with such patronising here, despite the fact that nobody ever accused metastasis of being sexy. Moreover, as no one ‘understands’ it, we take the view that we’re all in this together and, because it’s infinitely more important and fascinating than political stories, we have belaboured you with the foregoing! Just to make sure that the little we do know is clear, let us summarise in nine (more or less) one-liners:

  1. Tumor cells signal to potential secondary sites.
  2. They escape, burrow, circulate, lodge at landing sites and colonize.
  3. They change the pattern of proteins they make to permit escape.
  4. They change the pattern again when they colonize.
  5. No genetic signature (set of mutations) is known that indicates capacity to metastasize.
  6. The process is very inefficient – i.e. most tumor cells never form a colony.
  7. Despite the low success rate, metastasis is responsible for >90% of cancer deaths.
  8. Once colonization starts at secondary site, tumor cells recruit help from adjacent normal cells (as they do in primary tumors).
  9. Normal cells can also colonize – that is, non-tumour cells injected into the bloodstream of mice have been shown to form colonies in the lungs. 

364

This beautiful picture taken by Bettina Weigelin and Peter Friedl, UMC St Radboud Nijmegen, shows the remarkable plasticity of cells. The tumour cells (green) are invading normal mouse skin (orange) that also contains nerve fibers (blue) and collagen (grey). Cells may invade singly or as clusters. Their flexibility in wiggling through skin is similar to what happens when they cross the walls of blood vessels. http://www.cell.com/Cell_Picture_Show

Perhaps the most surprising item is the one we slipped in at Number 9 – that metastasis, or at least the capacity to colonize secondary sites, is not an exclusively property of some tumour cells but that normal cells can do it too. For sure we assume tumour cells are better at it – not least because they can send out advance signals giving them a better chance of a happy landing. And, of course, once a colony has been founded, tumour cells already carry mutated genes that can act as ‘drivers’ for further expansion of the secondary growth. Even so, the fact that normal cells can pass from the blood to a niche in lung tissue shows that colony foundation is not a unique property of tumour cells. Lung colonization by normal cells may be down to mechanics. Your lungs, which of course fit inside your chest, resemble a sponge – a mass of fine tubes linked to 300 million air sacs (called alveoli): spread them out and they’d cover a tennis court. The alveoli are surrounded by the most intricate network of blood vessels (called capillaries) and it is here that oxygen is transferred to blood. The fine capillaries may simply be a very effective trap – cells may become stuck without the requirement for any specific markers.

And the outlook?

We have therefore a dim picture of what is involved in metastasis but the presumption is that it may rapidly brighten. It’s not hard to see why metastasis is the culprit in the overwhelming majority of cancer deaths. By spreading to new sites cancers increase enormously the difficulty of detecting them, they become almost impossible to treat by surgery and the only strategy remaining is to use drugs (chemotherapy). Currently there are hardly any treatment options available for tumours that have metastasized and even when drugs do work their effects are short lived and tumours recur. The unveiling of every new facet of the amazing puzzle that is metastasis refines our thinking about the problem and carries with it the possibility of new targets and strategies for its blockade. The end is nowhere in sight but we are, at long last, making a significant beginning.

References

Ghajar, C.M. et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology 15, 807–817.

Brabletz, T., Lyden, D., Steeg, P.S. and Werb, Z. (2013). Roadblocks to translational advances on metastasis research. Nature Medicine 19, 1104-1109.

Obesity and Cancer

Science, you could say, comes in two sorts. There’s the stuff we more or less understand – and there’s the rest. We’re pretty secure with the earth being round and orbiting the sun, the heart being a pump connected to a network of tubes that keeps us alive, DNA carrying the genetic code – and a few other things. But human beings are curious souls and we tend to be fascinated by what we don’t know and can’t see – why the Dance of the Seven Veils caught on, I guess.

Scientists are, of course, the extreme example – they spend their lives pursuing the unknown (and, as Fred Hoyle gloomily remarked, they’re always wrong and yet they always go on). But in this media era they pay a public price for their doggedness because they get asked the pressing questions of the moment. Is global warning going to finish us off soon, why is British sport generally so poor and – today’s teaser – does being fat make you more likely to get cancer?

A few facts go a long way

The major cancers have become familiar because the numbers afflicted are so staggering – but the one good thing is that the epidemiology can tell us something about the disease. Thus for cancers of the bowel, endometrium, kidney, oesophagus and pancreas and also for postmenopausal breast cancer there is clear evidence that being overweight or obese makes you more susceptible. In other words, if you compare large groups with those cancers to equally large numbers without, the disease groups contain significantly more people who are fat. We should add that the above list is conservative. A number of other cancers are almost certainly more common in those who are overweight (brain, thyroid, liver, ovary, prostate and stomach tumours as well as multiple myeloma, leukaemia, non-Hodgkin lymphoma and malignant melanoma in men).

Sizing up the problem

The usual measure is Body Mass Index (BMI) – your weight (in kilograms) divided by the square of your height (in metres). A BMI of 25 to 29.9 and you’re overweight; over 30 is obese. In England in 2009 just over 61% of adults and 28% of children (aged 2-10) were overweight or obese and of these, 23% of adults and 14% of children were obese. And every year these figures get bigger.

How big is the risk?

Impossible to say exactly – for one thing we don’t know how long you need to be exposed to the risk (i.e. being overweight) for cancer to develop but in 2010 just over 5% of the total of new cancer cases in the UK was due to excess weight. That’s another conservative estimate, but it means at least 17,000 out of 309,000 cases, with bowel and breast cancers being the major sites.

What’s going on?

Showing an association is a good start but the important thing is to find out which molecules make that link. For obesity and cancer detail remains obscure but broad outlines are emerging, summarised in the sketch. In obesity fat (adipose) cells increase in both number and size (so it’s a double problem: more cells – and the fat cells themselves are fatter). As this happens other cells are recruited to adipose tissue and, from this cellular cooperative, signalling proteins are released that have the potential to drive tumours. This picture is similar to that of the microenvironment of tumours themselves, where many types of cell infiltrate the new growth. Initially this inflammatory and immune response aims to kill the tumour but if it fails the balance of signalling shifts so that it actually helps the tumour grow. In addition to signals from fat cells themselves, obesity is usually associated with increased levels of circulating growth hormones (e.g., insulin) and of lipids, both of which may also promote tumour development.

Thus many signals with cancerous potential arise in obese individuals. In principle these could initiate tumour growth or they could accelerate it in cancers that have started to develop independently of obesity. So it is complicated – but at least as new signalling strands emerge they offer new targets for drug therapy.

In obesity abnormal signals from fatty tissue can combine with others arising from perturbed metabolism to help cancers develop

Reference

World Cancer Research Fund (WCRF) Panel on Food, Nutrition, Physical Activity, and the Prevention of Cancer (WCRF, 2007).

Three cancers for the price of one?

Damaging the DNA Double-helix

A colleague of mine works on double-stranded DNA repair, as it’s called in the trade. This is something that goes on in all of us as our cells patch up DNA that’s being continuously assaulted by things that cause mutations. One source of damage is radiation that can snip the double helix, leaving separate bits of chromosomes floating around in the nucleus. Anything involving ‘snipping’ suggests a pretty potent type of mutation and it does indeed present a real problem because the cell has to find ways of tagging the floating ends, bringing them together and stitching them up. Amazingly, Nature has come up with not one but several ways of doing this and, by and large, they work pretty well. In ferreting around to define the proteins involved, my friend and his team also tried out drugs that might block repair. Having found a very effective one they set up a company to develop it – duly taken over by AstraZeneca, with the result that I now know one person in science who is very rich. The hope is that the drug might work against ovarian, prostate and breast cancers – which would be very good news for AstraZeneca!

But, you may already be asking, what’s the use of a repair blocker? Surely that’s the last thing you want in staving off cancer? Well, yes – and no. All things being equal, you do want to keep repair systems working but, if one of them becomes defective as part of cancer development, knocking out another may push the cell over the brink so that it can’t deal with the DNA chaos and commits suicide.

Bear in mind that our picture of cancer is one of widespread damage to DNA. But the genetic anarchy of cancer has parallels with the political variety in that both have limits. If the Molotov cocktail fraternity so disrupt society that the binmen stop collecting rubbish, everyone dies of cholera – not exactly a great social reform. Cancer too walks a tightrope between the disruption needed to overcome normal cell control and an extreme level of chaos that would simply kill the cell.

Two of the most familiar ‘cancer genes’ are BRCA1 and BRCA2, mutated forms of which can be inherited to give rise to several types of cancer. It turns out that both BRCAs play roles in DNA repair. The drug that has improved my friend’s bank balance is olaparib and it targets another DNA repair pathway – involving an enzyme called PARP (for poly (ADP-ribose) polymerase). So that’s why it’s useful: if the BRCA route is already blocked by mutation, inhibiting a second repair pathway (PARP) may scupper the cancer cell.

BRCA mutations cause about 5% of breast cancers and 10% of ovarian cancers and they can also give rise to prostate cancer. Small-scale clinical trials of olaparib and several related PARP inhibitors have shown anti-tumour effects against all three of these cancers. However, the most recent trial showed no significant effect on survival of breast cancer patients. Whilst this is a set-back for the PARP inhibitor field, another trial has shown significant effects on ovarian cancer.

As so often in the history of cancer treatment, great expectations have taken a bit of a knock but the PARP story is far from over and it still holds the promise than one class of drugs may be effective against several different types of cancer. If it were to turn out that way it would be great news for some cancer patients – and not bad for one or two bank balances.

Sitting on a problem

Spouses around the world whose hubbies spend all their time with their butts parked on the sofa watching wretched football on the t.v. might try informing them that they are significantly increasing their risk of prostate cancer. Breast, lung and bowel cancers get much media coverage, rightly so as the three biggest cancer killers in the western world. But prostate is not far behind (it’s too serious for jokes) – it’s the fifth most common cancer overall – and world-wide it kills 258,000 men a year. Prostate cancer can be treated by surgery, radiation therapy or drugs, including ‘chemical castration’, a phrase guaranteed to send a frisson through any male – though it simply means administering oestrogen to oppose testosterone production. This is effective in many cases but advanced forms of the disease are resistant to chemotherapy and for these there is no real treatment. Thus the news that a new drug, (abiraterone, trade name Zytiga), will come into use next year has to be hailed as a step forward. Abiraterone has just negotiated a phase 3 clinical trial in which (administered with prednisone, the pro-drug of prednisolone) it extended the average survival time for men with advanced prostate cancer from 11 to 15 months and it was approved by the U.S. Food and Drug Administration in April 2011.

Four months doesn’t sound a lot but it is a 36% increase. What’s more, abiraterone works in a different way to chemical castration: instead of stopping testosterone activating its target cells it prevents its synthesis altogether by blocking the action of an enzyme. So this is a totally new targeting strategy.

It isn’t a cure for prostate cancer, so ladies you can still use the stats to get him to do the washing up rather than watching the degrading pantomine that is professional football. But it is a small step in the cancer war and may be the precursor to affecting a major cut in the number of men who die every day from prostate cancer in the UK (28) and in the 28,600 that it kills every year in the USA.