Boldly Going

When you come across a very successful, middle-aged scientist jumping up and down shouting “This is going to be just amazing” you can only conclude that either the pressures of the life scientific have finally got to him and he’s flipped or there is something really remarkable going on. Thus my feeling this week when I noted the behaviour of Greg Hannon who now works at the Cancer Research Institute in Cambridge.

Probing further, it emerged that Hannon, who is collaborating with Xiaowei Zhuang at Harvard University in the ‘other’ Cambridge, has just been awarded a five-year grant of £20 million by the London-based charity Cancer Research UK as part of its Grand Challenge initiative – more than enough to get your jumping genes going.

But it’s the aim of the project rather than its monetary size that is truly astonishing and has almost a feel of science fiction about it. The plan is nothing less than to come up with an interactive virtual-reality map of breast cancers. That is, to reconstruct every cell that makes up a tumour, showing the different types of cell and what they are up to at any given time – meaning that the model will display the expression level of thousands of genes in each cell and the different proteins being made. Staggering.

What’s the point?

The project is driven by the fact that we have gradually come to realize that tumours are a complex mixture of cells (what’s been called the tumour microenvironment) and the signals that these cells send out and receive determine the extent of tumour growth and whether it can spread to other sites in the body (i.e. metastasize).

Where have we got to?

One approach to mapping what’s going on was laid out a couple of years ago by the converging studies of Rahul Satija and colleagues of the Broad Institute of MIT and Harvard and Kaia Achim et al. from labs in Heidelberg, Cambridge and Oxford using zebrafish embryos and worm brains, respectively.

The method has two parts:

  1. The tissue is dissociated into single cells and the power of sequencing is applied to obtain RNA sequences from each cell (revealing which genes are ‘switched on’ in that cell).
  2. The second step visualizes specific RNAs using tagged probes (fluorescently labeled RNAs that enter cells and bind to target RNAs molecules).

In essence a reference map is made by overlaying the intact tissue with a grid and matching a cell to a grid area by comparing expression of a number of ‘landmark’ genes with the fluorescence marker signal.

To do all this they devised a computational package that, using fewer than 100 landmark genes, maps hundreds of sequenced cells to their location in the tissue. In that arty way that scientists have, they named their package after Georges-Pierre Seurat, the French chappie who came up with the idea of painting in small dots of colour (though his weren’t fluorescent).

Cellular pointillism has just taken another step forward with Keren Bahar Halpern, Ido Amit and Shalev Itzkovitz at the Weizmann Institute of Science, Rehovot, Israel producing a cell-by-cell map of mouse liver, complete with RNA sequences from each cell. To be precise they mapped the hexagon-shaped units called lobules that are repeated to make up mammalian liver.

The shapes of things to come

So the next step for Hannon and his colleagues is an interactive map of a human tumour and, if you can’t wait, CLICK HERE to see their mock-up to give you some idea of what’s in store. In this synthetic video tumour cells are green, macrophages are blue and blood vessels are red.

Overwhelming?

So it’s warp factor 9 for Captain Hannon and his crew. It may be that the 3D images of tumours will look a bit the virtual graphics that the astrophysicists fob off on us whilst pretending they have some idea what a star’s doing umpti-zillion light years away. But in fact, rather than boldly going where no man has gone before“, this cellular journey is better summed up by Marcel Proust The real voyage of discovery consists not in seeking new landscapes, but in having new eyes” – the new eyes being the stunning combination of methods that permits 3D interrogation of individual cells.

Will this phase of the Grand Challenge produce overwhelming amounts of data? Undoubtedly. But, if we are to understand how living things work we have to front up to the complexity of nature. We then have to hope we are smart enough to resolve the crucial from the detail.

References

Satija, R. et al. (2015). Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33, 495–502.

Achim, K. et al. (2015). High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nature Biotechnology 33, 503–509.

Halpern, K. B. et al. (2017). Nature 542, 352–356.

Advertisements

Cockles and Mussels, Alive, Alive-O!

And so they are across the globe, not forgetting clams, a term that can cover all bivalve molluscs – a huge number of species (over 15,000), all having a two-part, hinged shell. The body inside doesn’t have a backbone, making it soft and edible on a scale of keeping-you-alive to orgasmic, depending on the consumer – oysters and scallops are part of the family.

Bivalves are particularly common on rocky and sandy coasts where they potter happily along, generally burrowing into sediment although some of them, scallops for instance, can swim. By and large their only problem is that humans like to eat them.

Clamming up

However, it gradually emerged in the 1970s that there was another cloud hovering over some of these gastronomic delights. Their commercial importance had drawn attention to the fact that soft-shell clams living along the east coast of North America, together with mussels on the west coast and cockles in Ireland, were dying in large numbers. The cause was an unusual type of cancer in which leukemia-like cells reproduce until they turn the blood milky and the animals die, in effect, from asphyxiation. In soft-shell clams, also known as sand gapers and steamers, the disease has spread over 1,500 km from Chesapeake Bay to Prince Edward Island.

A 2009 study had shown that as the disease progresses there is a rise in the number of blood cells that have abnormally high amounts of DNA (in clams typically four times the normal number of chromosomes – i.e. they’re tetraploid). In parallel with this change the cells make increasing amounts of an enzyme called reverse transcriptase (RT).

That was pretty surprising as RT does what its name suggests: reverses part of the central dogma of molecular biology (DNA makes RNA makes protein) by using RNA as a template to make DNA. RT is usually carried by viruses whose hereditary material is RNA (rather than DNA – so they’re called retroviruses). As part of their life cycle they turn their genomes into DNA that inserts into the host’s genome – which gets reproduced (as RNA) to make more viruses.

But how did RT get into clams? Enter Michael Metzger and Stephen Goff from Columbia University in New York, together with Carol Reinisch and James Sherry from Environment Canada, who began to unravel the mystery.

Jumping genes

Using high throughput sequencing they showed that clam genomes contain stretches of about 5,000 bases that came about when the RNA of a virus was copied into DNA by RT (reverse transcriptase) and then inserted into the host chromosome. Normal clams have from two to ten copies of this ‘repetitive element’ that Metzger & Co dubbed Steamer. That wasn’t too surprising as we have repetitive DNA too – it makes up about half the human genome. Many of these repeated sequences can move around within the genome – they’re often called ‘jumping genes’ – and it’s easy to see how this can happen when RT uses RNA to make DNA that can then pop into new sites in the genome. And you might guess that this process could damage the host DNA in ways that might lead to disease.

A long jump?

It turned out that the diseased clams had suffered massive amplification of Steamer to the extent that they carry 150 to 300 copies of the sequence. So that’s about 30 times as many Steamer DNAs being scattered across the clam genome – but how could that cause the same disease all the way from New York to Prince Edward Island? The answer came from peering into the DNA sequences of the tumour cells: they were virtually identical to each other – but they were different to those of their hosts! Meaning? The damage that led to leukemia, caused by shoe-horning 100s of extra copies of Steamer into clam genomes, only occurred once. And the staggering implication of that finding is that the cancer spread from a single ‘founder’ clam throughout these marine-dwelling molluscs. The resemblance to the way the cancer spreads in Tasmanian devils is striking.

Fishier and fishier

Fast forward to June 2016 and the latest contribution from the Metzger group reporting four more examples of transmissible cancer in bivalves – in mussels from British Columbia, in golden carpet shell clams from the Spanish coast and two forms in cockles.

Each appears to cause the same type of leukemia previously found in clams. The disease appears to be transmitted ‘horizontally’, i.e. by living cancer cells, descended from a single common ancestor, passing directly from one animal to another. Indeed, if you transplant blood cells from infected animals into normal clams they get leukemia.

 Species hopping

All that is quite amazing but the genetic analysis came up with an even more bizarre finding. In the golden carpet shell clams DNA from cancer cells showed no match with normal DNA from this species. It was clearly derived from a different species, which turned out to be the pullet shell clam – a species that, by and large doesn’t get cancer. So they have presumably come up with a way of resisting a cancer that arose in them, whilst at the same time being able to pass live tumour cells on to another species!!clam-transfer-pic

Cancer cell transmission between different species of shellfish. Cancer cells can arise in one species (pullet shell clams) that do not themselves develop leukemia but are able to pass live cells to another species (golden carpet shell clams) that do get leukemia (Metzger et al. 2016).

We have no idea how the cancer cells survive transfer. It seems most likely that they are taken up through the siphons that molluscs use for feeding, respiration, etc. and then somehow get across the walls of the respiratory/digestive systems. In the first step they would have to survive exposure to sea water which contains a lot more salt than cells are happy in. The ‘isotonic’ saline used in drips to infuse patients contains 0.9% salt whereas seawater, with 3.5%, is ‘hypertonic’ – cells put in a hypertonic solution will shrink as water is drawn out of the cell into the surrounding solution. Presumably the cells shrivel up a bit but some at least take this in their stride and recover to reproduce in their new host. Equally obscure is how a species can protect itself from a cancer that it can pass to another species.

These amazing findings throw a different light on the care-free underwater life depicted in Disney’s The Little Mermaid, in which the popular song ‘Under the Sea’ fails to mention floating cancer.

Can this happen to us?!!

Well, not as far as we know. But the fact that the known number of cancers that can be passed from one animal to another has now risen to nine does make you wonder. However, there’s no evidence that it happens in humans in anything like the normal course of events. There are examples of person-to-person transfer, notably during organ transplantation, and there is one recent case of cancerous cells from a tapeworm colonising a human host. But these are very rare, the latter occurring in a patient with a severely weakened immune system, and there is no example of spread beyond two people.

Phew! What a relief! So now we can concentrate on following developments both in Tasmania and beneath the waves in the hope that, not only can we go on satisfying our lust for clam bakes and chowders, but that these incredible creatures will reveal secrets that will benefit mankind.

References

AboElkhair, M. et al. (2009). Reverse transcriptase activity associated with haemic neoplasia in the soft-shell clam Mya arenaria. Diseases of Aquatic Organisms 84, 57-63.

Arriagada, G. et al. (2014). Activation of transcription and retrotransposition of a novel retroelement, Steamer, in neoplastic hemocytes of the mollusk Mya arenaria. PNAS 2014 111 (39) 14175-14180; published ahead of print September 8, 2014, doi:10.1073/pnas.1409945111.

Metzger, M.J. et al. (2015). Horizontal Transmission of Clonal Cancer Cells Causes Leukemia in Soft-Shell Clams. Cell 161, 255–263.

Metzger, M.J. et al. (2016). Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534, 705–709.

Muehlenbachs, A. et al. (2015). Malignant Transformation of Hymenolepis nana in a Human Host. N Engl J Med 2015; 373:1845-1852.

Invisible Army Rouses Home Guard

Writing this blog – perhaps any blog – is an odd pastime because you never really know who, if anyone, reads it or what they get out of it. Regardless of that, one person that it certainly helps is me. That is, trying to make sense of the latest cancer news is one of the best possible exercises for making you think clearly – well, as clearly as I can manage!

But over the years one other rather comforting thing has emerged: more and more often I sit down to write a story about a recent bit of science only to remember that it picks up a thread from a piece I wrote months or sometimes years ago. And that’s really cheering because it’s a kind of marker for progression – another small step forward.

Thus it was with this week’s headline news that a ‘cancer vaccine’ might be on the way. In fact this development takes up more than one strand because it’s about immunotherapy – the latest craze – that we’ve broadly explained in Self Help Part-1Gosh! Wonderful GOSH and Blowing-up Cancer and it uses artificial nanoparticles that we met in Taking a Swiss Army Knife to Cancer.

Arming the troops

What Lena Kranz and her friends from various centres in Germany described is yet another twist on the idea of giving our inbuilt defence – i.e. the immune system – a helping hand to tackle tumours. They made small sacs of lipid called nanoparticles (they’re so small you could get 300 in the width of a human hair), loaded them with bits of RNA and injected them into mice. This invisible army of fatty blobs was swept around the circulatory system whereupon two very surprising things happened. The first was that, with a little bit of fiddling (trying different proportions of lipid and RNA), the nanoparticles were taken up by two types of immune cells, with very little appearing in any other cells. This rather fortuitous result is really important because it means that the therapeutic agent (nanoparticles) don’t need to be directly targetted to a tumour cell – thus avoiding one of the perpetual problems of therapy.

The second event that was not at all a ‘gimme’ was that the immune cells (dendritic cells and macrophages) were stimulated to make interferon and they also used the RNA from the nanoparticles as if it was their own to make the encoded proteins – a set of tumour antigens (tumour antigens are proteins made by tumour cells that can be useful in identifying the cells. A large number of have now been found: one group of tumour antigens includes HER2 that we met as a drug target in Where’s That Tumour?)

The interferon was released into the tumour environment in two waves, bringing about the ‘priming’ of T lymphocytes so that, interacting via tumour antigens, they can kill target cells. By contrast with taking cells from the host and carrying out genetic engineering in the lab (Gosh! Wonderful GOSH), this approach is a sort of internal re-wiring achieved by giving a sub-set of immune system cells a bit of genetic code (in the form of RNA).

TAgs RNA Nano picNanoparticle cancer vaccine. Tiny particles (made of lipids) carry RNA into cells of the immune system (dendritic cells and macrophages) in mice. A sub-set of these cells releases a chemical signal (interferon) that promotes the activation of T lymphocytes. The imported RNA is translated into proteins (tumour antigens) – that are presented to T cells. A second wave of interferon (released from macrophages) completes T cell priming so that they are able to attack tumour cells by recognizing antigens on their surface (Kranz et al. 2016; De Vries and Figdor, 2016).

So far Kranz et al. have only tried this method in three patients with melanoma. All three made interferon and developed strong T-cell responses. As with all other immunotherapies, therefore, it is early days but the fact that widely differing strategies give a strong boost to the immune system is hugely encouraging.

Other ‘cancer vaccines’

As a footnote we might add that there are several ‘cancer vaccines’ approved by the US Food and Drug Administration (FDA). These include vaccines against hepatitis B virus and human papillomavirus, along with sipuleucel-T (for the treatment of prostate cancer), and the first oncolytic virus therapy, talimogene laherparepvec (T-VEC, or Imlygic®) for the treatment of some patients with metastatic melanoma.

How was it for you?

As we began by pointing out how good writing these pieces to clarify science is for me, the question for those dear readers who’ve made it to the end is: ‘How did I do?’

References

Kranz, L.M. et al. (2016). Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature (2016) doi:10.1038/nature18300.

De Vries, J. and Figdor, C. (2016). Immunotherapy: Cancer vaccine triggers antiviral-type defences.Nature (2016) doi:10.1038/nature18443.

 

Guess Who’s Coming to Dinner?

 

Question: when is a gene not a gene? Answer: when it’s a pseudogene.

Genes are familiar enough these days when the acronym DNA has become part of everyday speech “It is in Toyota’s DNA that mistakes made once will not be repeated”, as the CEO of Toyota rather sinisterly remarked. You could say that’s pseudo-scientific rubbish but, despite that kind of liberty-taking, most will know that a gene is a stretch of our genetic material (DNA) that carries the code to make a closely related RNA molecule that, in turn, may be used as a template to make a protein ­– it’s the molecular unit of heredity. Well known too is that the Greeks gave us ‘pseudo’ – but what’s a ‘lying’ or ‘false’ gene – and who cares?

No prizes for guessing that we should all be interested because it’s emerging that pseudogenes can be important players in cancer.

Player’s biography

Pseudogenes are somewhat disreputable because they are relatives of normal genes that along the evolutionary highway have become dysfunctional by losing the capacity to be ‘expressed’ – that is, their code can no longer be transformed into RNA and protein. You could think of them as an example of the shambolic way in which species have evolved by random happenstance so that they work in their own particular niches. And if you want the outstanding example of unintelligent design, look no further than yourself, as we did in Holiday Reading (2), Poking the Blancmange.

Just for background, although it doesn’t affect the main story, there are three ways in which our genome can acquire a pseudogene:

1. A normal gene becomes functionally extinct: odd mutational events disable the stretches of DNA that control its expression. The gene is like a siding on a railway that isn’t used for years and years until eventually the points  seize up (it would be a ‘switch’ on US railroads) and the cell machinery can no longer get at it – but when this does happen we get by without that gene.

2. During evolution genes quite often get duplicated – giving multiple copies: if one of these loses its regulatory bits the duplicate gene is switched off – it’s become a ghost.

3. We owe about 8% of our genome to viruses – mainly those with RNA genomes (retroviruses) whose life-cycle turns their RNA into DNA that has then been stuck into our genome. And that’s a lot (about 100,000 bits of retrovirus DNA) especially bearing in mind that only about 1% of our genome encodes proteins.

So our precious genome is littered with corpses and fragments thereof. In the past there’s been a regrettable tendency to label this material as ‘junk’ but increasingly we’re now discovering that there may be genetic life after death, so to speak. It’s not surprising if you think about it. If random events can inactivate a gene then they might do the reverse, even if that may be a much rarer event. And indeed it’s now clear that pseudogenes can be brought back to life through the random mutational events that characterise the rough and tumble of cellular life.

So not all pseudogenes are extinct then?

Correct. Obviously we wouldn’t be wittering on about them had not some bright sparks just shown that pseudogenes – or at least one in particular – can be re-awakened to play a part in cancer. The luminaries are Florian Karreth, Pier Paolo Pandolfi and friends from all over the place (USA, UK, Italy, Singapore) who found that a pseudogene called BRAFP1 (a relative of the normal BRAF gene) can help to drive cancer development. Some earlier studies had shown that BRAFP1 was expressed (i.e. RNA was made from DNA) in various human tumours but Karreth & Co extended this, detecting significant levels of the pseudogene RNA in lymphomas and thyroid tumours and also in cells from melanoma, prostate cancer and lung cancer, whilst it’s not switched on in the corresponding normal cells.

To show that this pseudogene can drive cancers they genetically engineered its over-expression in mice, whereupon the animals developed an aggressive malignancy akin to human lymphoma (specifically diffuse large B cell lymphoma). Short-circuiting an enormous amount of work, it emerged that the pseudogene up-regulated a signaling pathway involving its normal counterpart, BRAF, that drives proliferation.

106 pic

How a pseudogene (BRAFP1) might drive cancer. Top: The scheme illustrates the ‘central dogma’ of molecular biology: DNA makes RNA makes protein. In normal cells a family of micro RNAs (different coloured wiggles) regulate the level of BRAF RNA and hence of BRAF protein (above white line).  Bottom: When the pseudogene BRAFP1 is switched on its RNA competes for the negative regulators: the result is more BRAF RNA making more BRAF protein – making cancer (Karreth et al., 2015).

Interfering RNA

The pseudogene’s RNA manages to interfere with normal control by targeting another type of RNA – micro RNAs, so called because they’re very short (about 20 bases (units) long – so they’re encoded by tiny stretches of the over 3,000 million units that make up the genome). Small they may be but there are hundreds of them and it’s become clear over the last few years that they play critical roles in regulating how much protein is made from specific RNAs. Their method is simple: they recognize (i.e. bind to) stretches of RNA that encode proteins, thereby blocking translation into protein.

Karreth & Co showed that there are about 40 different micro RNAs that can stick to the RNAs encoding BRAF or BRAFP1. Normally when there’s no (or very little) BRAFP1 around they have only BRAF to act on – and their role is to control the proliferation signal it transmits – i.e. to keep that signal to what’s required for normal cell growth control. BUT, when the pseudogene RNA is made in significant amounts the attentions of the 40 micro RNAs are divided. Result: more BRAF RNA, more BRAF protein, higher cell proliferation.

It’s a bit like you’re just sitting down to a family dinner for four when there’s a knock on the door and in walks long lost Uncle Bert, complete with wife and two kids in tow. Of course you invite them to dine too – but now a meal for four has to stretch to eight. There is something for everybody – just not as much. Similarly for the regulators of BRAF: when BRAFP1 is present there’s half as much of the RNA regulators for each – and the result, bearing mind that they are negative regulators, is that the activity of BRAF goes up and the cells proliferate more avidly. The pseudogene is driving cancer.

First but not last

For decades pseudogenes were thought of as ‘junk’ DNA along with most of the rest of the genome that didn’t encode proteins – though I might say that was a concept I never promoted. Beware labeling anything in our genome as junk for it may rise, Kraken like, to remind us of our ignorance. And, now that one pseudogene has come in from the cold and been shown to drive some cancers, you can be confident that others will follow.

References

Karreth, F.A. et al. (2015). The BRAF Pseudogene Functions as a Competitive Endogenous RNA and Induces Lymphoma In Vivo. Cell 161, 319–332.

Mutating into Gold

It’s probably just as well that few us are aware that the bodies we live in are a battlefield – the cells and molecules that make us are in constant strife to ensure our survival. The lid is lifted from time to time – when we get a cold or pick up some other infection and our immune response sorts it out but not without giving us a headache or a runny nose, just to let us know it’s on the job. By and large though, we plough our furrow in glorious ignorance.

Saving our cells

Perhaps the most important of all the running battles is to save our DNA – that is, to repair the damage continuously suffered by our genetic material so we can carry on. It’s an uphill struggle. The DNA in one of our cells can take up to a million hits every day – and the bombardment comes from every direction: from radiation, air pollution and carcinogens in some of the food we eat. And, of course, we don’t need to mention cigarette smoke.

Damaged chromosomes (blue arrows)

Damaged chromosomes    (blue arrows)

On top of all that cells have to make a new DNA copy every time they reproduce – and we do a lot of that: recall that you set sail on the journey of life as one single, fertilized egg cell and now look at you: a clump of ten trillion (1013) cells that, just to stay as you are, has to make one million new cells every second. What’s more some of your cells deliberately break their own DNA in a process called ‘gene shuffling’ that goes to make the finished product of your aforementioned immune system. The biochemical machinery that does these jobs is mighty efficient but nobody’s perfect – except, of course, for John Eales, Australia’s most successful rugby union captain, nicknamed “Nobody” because “Nobody’s perfect”. When the three thousand million base-pairs of DNA are stuck together for a new cell there’s a mistake about once in every million units added – but a kind of quality control check (mismatch repair) then fixes most of these, so that the overall error is about one in a thousand million. That’s one example of the nifty ways evolution has come up with to fix the damage suffered by our genetic material from all this replicating, assaulting and constructing.

Keeping the show on the road

The overall upshot of the repair machinery is that less than one mutation per day becomes fixed in our genomes – and thus passed on to succeeding generations of cells. The range of things that can damage DNA – and hence the different forms that damage can take – tells you that there must be several different repair systems and indeed we now know that about 200 genes and their protein products have a hand in some repair process or another. There’s so much to know that DNA damage and repair has its own data-base called, inevitably, REPAIRtoire. Much of what we know is, to a considerable extent, thanks to the labours of Tomas Lindahl, Paul Modrich and Aziz Sancar who have just been jointly awarded this year’s Nobel Prize in Chemistry. Because damage to DNA – aka mutations – drives the development of cancers you might suppose that in these pages we will have met these gentlemen before – and indeed we have, if not by name.

Tomas Lindahl Paul Modrich Aziz Sancar

Tomas Lindahl                      Paul Modrich                       Aziz Sancar

Winners of the 2015 Nobel Prize in Chemistry

Forty odd years ago much of the above would have bewildered cell biologists. Thirty years before then, in 1944, Oswald Avery, Colin MacLeod and Maclyn McCarty had shown for the first time that genes are composed of DNA, a finding confirmed in 1952 by Alfred Hershey and Martha Chase in a classic experiment using a virus that infects and replicates within a bacterium. But with the acceptance that, however improbable, our genetic material was indeed made of DNA there came the assumption that it must be very stable. After all, if it carried our most valuable possession then surely it had to be made of molecular granite, absolutely resistant to any kind of chemical change or degradation. Had the bewildered boffins been told that in the twenty-first century we would be sequencing woolly mammoth DNA from samples that are millions of years old they would have been confirmed in their view.

It was Tomas Lindahl in the early 1970s who demonstrated that, although DNA is indeed more stable than its close rello RNA (the intermediate in making proteins) it nevertheless decays quite rapidly under normal conditions – it’s only when sealed in permafrost or blobs of amber that it becomes frozen in time. Lindahl realized that for life based on DNA to have evolved there had to be repair systems that could sustain our genetic material in a functional state and he went on to resolve how one of these did it. Aziz Sancar has worked particularly on the circadian clock (discovering that CRY is a clock protein) and how cells repair ultraviolet radiation damage to DNA: people born with defects in this system develop skin cancer if they are exposed to sunlight. Paul Modrich has contributed mainly to our knowledge of mismatch repair.

Lindahl, Modrich, Sancar and their colleagues over many years haven’t come up with the philosopher’s stone – the chemists still can’t transmute base metals into gold without the aid of a particle accelerator. But what they have done is much more useful for mankind. Revealing the detail of how genome maintenance works has already lead to new cancer treatments and from this beginning will come greater benefits as time goes by. They should enjoy the proceeds of turning molecular knowledge if not to gold then into Swedish kronor (8 million of them) – for the rest of the world it’s a bargain.

References

Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709-715.

Yang YG, Lindahl T, Barnes DE. (2007). Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873-886.

Shao, H, Baitinger, C, Soderblom, EJ, Burdett, V, and Modrich, P. (2014). Hydrolytic function of Exo1 in mammalian mismatch repair. Nucleic Acids Research 42, 7104-7112.

Tan C, Liu Z, Li J, Guo X, Wang L, Sancar A, Zhong D. (2015). The molecular origin of high DNA-repair efficiency by photolyase. Nat Commun. 6, 7302.

The Hay Festival

According to the Hay Festival  a recording of my talk ‘Demystifying Cancer’ on Wednesday 28th May should be available on their web site shortly and it can also be heard on the university site. However, I thought it might be helpful to post a version, not least for the for the rather breathless lady who arrived at the book signing session apologising for missing the lecture because she’d got stuck in mud. So for her and perhaps for many others I had the privilege of chatting to afterwards, read on …

 The Amazing World of Cells, Molecules … and CancerOpening pic

One of the biggest influences on my early years was the composer and conductor Antony Hopkins, who died a few days ago. Most of what I knew about music by the time I was 15 came from his wonderfully clear dissections of compositions in the series Talking About Music broadcast by the BBC Third Programme. When he was axed by the Beeb in 1992 for being ‘too elitist’ – yes, they talked that sort of drivel even then – Hopkins might have wished he’d been a biologist. After all, biology must be the easiest subject in the world to talk about. Your audience is hooked from the outset because they know it’s about them – if not directly then because all living things on the planet are interlinked – so even the BBC would struggle to make an ‘elitism’ charge stick. They know too that it’s beautiful, astonishing and often funny – both from what they see around them and also, of course, courtesy of David Attenborough. So it’s not a surprise when you show them that the micro-world of cells and molecules is every bit as wonderful.

The secret of life

What does come as a bit of a shock to most non-scientists is when you explain the secret of life. No, that’s not handing round pots of an immortalization elixir – much better, it’s outlining what’s sometimes rather ponderously called the central dogma of molecular biology – the fact that our genetic material (aka DNA) is made from only four basic units (most easily remembered by their initials: A, C, G and T – humans have over three thousand million of these stuck together). This is our ‘genome’ and the ‘genetic code’ enshrined in the DNA sequence makes us what we are – with small variations giving rise to the differences between individuals. The genetic code carries instructions for glueing together another set of small chemicals to make proteins. There are 20 of these (amino acids) and they can be assembled in any order to make proteins that can be thousands or even tens of thousands of amino acids long. These assemblies fold up into 3D shapes that give them specific activities. Proteins make living things what they are – they’re ‘the machines of life’ – and their infinite variety is responsible for all the different species to have appeared on earth. Can the basis of life really be so simple?

The paradox of cancer

Turning to cancer, a three word definition of ‘cells behaving badly’ would do fine. A more scientific version would be ‘cells proliferating abnormally.’ That is, cells reproducing either when they shouldn’t, or more rapidly than normal, or doing so in the wrong place. The cause of this unfriendly behavior is damaged DNA, that is, alteration in the genetic code – any such change being a ‘mutation’. If a mutation affects a protein so that it becomes, say, hyperactive at making cells proliferate (i.e. dividing to make more cells), you have a potential cancer ‘driver’. So at heart cancer’s very simple: it’s driven by mutations in DNA that affect proteins controlling proliferation. That’s true even of the 20% or so of cancers caused by chronic infection – because that provokes inflammation, which in turn leads to DNA damage.

The complexity of cancer arises because, in contrast to several thousand other genetic diseases in which just a single gene is abnormal (e.g., cystic fibrosis), tumour cells accumulate lots of mutations. Within this genetic mayhem, relatively small groups of potent mutations (half a dozen or so) emerge that do the ‘driving’. Though only a few ‘driver mutations’ are required, an almost limitless number of combinations can arise.

Accumulating mutations takes time, which is why cancers are predominantly diseases of old age. Even so, we should be aware that life is a game of genetic roulette in which each individual has to deal with the dice thrown by their parents. The genetic cards we’re dealt at birth may combine with mutations that we pick up all the time (due to radiation from the sun and the ground, from some foods and as a result of chemical reactions going on inside us) to cause cancers and, albeit rarely, in unlucky individuals these can arise at an early age. However, aside from what Mother Nature endows, humans are prone to giving things a helping hand through self-destructive life-style choices – the major culprits, of course, being tobacco, alcohol and poor diets, the latter being linked to becoming overweight and obese. Despite these appalling habits we’re living longer (twice as long as at the beginning of the twentieth century) which means that cancer incidence will inevitably rise as we have more time to pick up the necessary mutations. Nevertheless, if we could ban cigarettes, drastically reduce alcohol consumption and eat sensibly we could reduce the incidence of cancers by well over a half.

How are we doing?

Some readers may recall that forty-odd years ago in 1971 President Nixon famously committed the intellectual and technological might of the USA to a ‘War on Cancer’ saying, in effect, let’s give the boffins pots of money to sort it out pronto. Amazing discoveries and improved treatments have emerged in the wake of that dramatic challenge (not all from Uncle Sam, by the way!) but, had we used the first grant money to make a time machine from which we were able to report back that in 2013 nearly six hundred thousand Americans died from cancer, that the global death toll was over eight million people a year and will rise to more than 13 million by 2030 (according to the Union for International Cancer Control), rather less cash might subsequently have been doled out. Don’t get me wrong: Tricky Dicky was spot on to do what he did and scientists are wonderful – clever, dedicated, incredibly hard-working, totally uninterested in personal gain and almost always handsome and charming. But the point here is that, well, sometimes scientific questions are a little bit more difficult than they look.

Notwithstanding, there have been fantastic advances. The five year survival rates for breast and prostate cancers have gone from below 50% to around 90% – improvements to which many factors have contributed including greater public awareness (increasing the take-up of screening services), improved surgical and radiology methods and, of course, new drugs. But for all the inspiration, perspiration and fiscal lubrication, cancer still kills over one third of all people in what we like to refer to as the “developed” world, globally breast cancer killed over half a million in 2012 and for many types of cancer almost no impact has been made on the survival figures. In the light of that rather gloomy summary we might ask whether there is any light at the end of the tunnel.

The Greatest Revolution

From one perspective it’s surprising we’ve made much progress at all because until just a few years ago we had little idea about the molecular events that drive cancers and most of the advances in drug treatment have come about empirically, as the scientists say – in plain language by trial and error. But in 2003 there occurred one of the great moments in science – arguably the most influential event in the entire history of medical science – the unveiling of the first complete DNA sequence of a human genome. This was the product of a miraculous feat of international collaboration called The Human Genome Project that determined the order of the four units (A, C, G and T) that make up human DNA (i.e. the sequence). Set up in 1990, the project was completed by 2003, two years ahead of schedule and under budget.

If the human genome project was one of the most sensational triumphs in the history of science what has happened in the ensuing 10 years is perhaps even more dazzling. Quite breathtaking technical advances now mean that DNA can be sequenced on a truly industrial scale and it is possible to obtain the complete sequence of a human genome in a day or so at a cost of about $1,000.

These developments represent the greatest revolution because they are already having an impact on every facet of biological science: food production, microbiology and pesticides, biofuels – and medicine. But no field has been more dramatically affected by this technological broadside than cancer and already thousands of genomes have been sequenced from a wide range of tumours. The most striking result has been to reveal the full detail of the astonishing genetic mayhem that characterizes cancer cells. Tens of thousands or even hundreds of thousands of mutations featuring every kind of molecular gymnastics imaginable occur in a typical tumour cell, creating a landscape of stunning complexity. At first sight this makes the therapeutic challenge seem daunting, but all may not be lost because the vast majority of this genetic damage plays no role in cancer development (they’re ‘passenger’ mutations) and the power of sequencing now means they can be sifted from the much smaller hand of ‘driver’ mutations. From this distillation have emerged sets of ‘mutational signatures’ for most of the major types of cancers. This is a seismic shift from the traditional method of assessing tumours – looking directly at the cells after treating them with markers to highlight particular features – and this genetic approach, providing for the first time a rigorous molecular basis for classifying tumours, is already affecting clinical practice through its prognostic potential and informing decisions about treatment.

A new era

One of the first applications of genomics to cancer, was undertaken by a group at The Wellcome Trust Sanger Institute near Cambridge (where the UK part of the Human Genome Project had been carried out), who screened samples of the skin cancer known as malignant melanoma. This is now the fifth most common UK cancer – in young people (aged 15 to 34) it’s the second most common – and it killed over 2,200 in 2012. Remarkably, about half the tumours were found to have a hyperactivating mutation in a gene called BRAF, the effect being to switch on a signal pathway so that it drives cell proliferation continuously. It was a remarkable finding because up until then virtually nothing was known about the molecular biology of this cancer. Even more amazingly, within a few years it had lead to the development of drugs that caused substantial regression of melanomas that had spread to secondary sites (metastasized).

This was an early example of what has become known as personalized medicine – the concept that molecular analysis will permit treatment regimens to be tailored to the stage of development of an individual’s cancer. And maybe, at some distant time, the era of personalized medicine will truly come about. At the moment, however, we have very few drugs that are specific for cancer cells – and even when drugs work initially, patients almost invariably relapse as tumours become resistant and the cancer returns – one of the major challenges for cancer biology.

It behoves us therefore to think laterally, of impersonal medicine if you like, and one alternative approach to trying to hit the almost limitless range of targets revealed by genomics is to ask: do tumour cells have a molecular jugular – a master regulator through which all the signals telling it to proliferate have to pass. There’s an obvious candidate – a protein called MYC that is essential for cells to proliferate. The problem with stopping MYC working is that humans make about one million new cells a second, just to maintain the status quo – so informed opinion says that blocking MYC will kill so many cells the animal will die – which would certainly fix cancer but not quite in the way we’re aiming for. Astoundingly, it turns out in mice at least it doesn’t work like that. Normal cells tolerate attenuation of MYC activity pretty well but the tumour cells die. What a result!! We should, of course, bear in mind that the highway of cancer therapy is littered with successful mouse treatments that simply didn’t work in us – but maybe this time we’ll get lucky.

An Achilles’ heel?

In defining cancers we noted the possibility that tumour cells might proliferate in the wrong place. So important is this capacity that most cancer patients die as a result of tumour cells spreading around the body and founding secondary colonies at new sites – a phenomenon called metastasis. Well over 100 years ago a clever London physician by the name of Stephen Paget drew a parallel between the growth of tumours and plants: ‘When a plant goes to seed, its seeds are carried in all directions; but they can only live and grow if they fall on congenial soil.’ From this emerged the “seed and soil” theory as at least a step to explaining metastasis. Thus have things languished until very recent findings have begun to lift the metastatic veil. Quite unexpectedly, in mouse models, primary tumours dispatch chemical messengers into the blood stream long before any of their cells set sail. These protein news-bearers essentially tag a landing site within the circulatory system on which the tumour cells touch down. Which sites are tagged depends on the type of tumour – consistent with the fact that human cancers show different preferences in metastatic targets.

These revelations have been matched by stunning new video methods that permit tumour cells to be tracked inside live mice. For the first time this has shone a light on the mystery of how tumour cells get into the circulation – the first step in metastasis. Astonishingly tumour cells attach themselves to a type of normal cell, macrophages, whose usual job is to engulf and digest cellular debris and bugs. The upshot of this embrace is that the macrophages cause the cells that line blood vessels to lose contact with each other, creating gaps in the vessel wall through which tumour cells squeeze to make their escape. This extraordinary hijacking has prognostic value and is being used to develop a test for the risk of metastasis in breast cancers.

The very fact that cancers manifest their most devastating effects by spreading to other sites may lay bare an Achilles’ heel. Other remarkable technical developments mean that it’s now possible to fish out cancer cells (or DNA they’ve released) from a teaspoonful of circulating blood (that’s a pretty neat trick in itself, given we’re talking about fewer than 100 tumour cells in a sea of several billion cells for every cubic millimeter of blood). Coupling this to genome sequencing has already permitted the response of patients to drug therapy to be monitored but an even more exciting prospect is that through these methods we may be moving towards cancer detection perhaps years earlier than is possible by current techniques.

As we’ve seen, practically every aspect of cancer biology is now dominated by genomics. Last picIt’s so trendy that anyone can join in. Songs have been written about DNA and you can even make a musical of your own genetic code, French physicist Joel Sternheimer having come up with a new genre – protein music – in which sequence information is converted to musical notes. Antony Hopkins, ever receptive to new ideas, would have been enthralled and, with characteristic enthusiasm, been only too happy to devote an episode of Talking About Music to making tunes from nature.

Seeing the Invisible: A Cancer Early Warning System?

Sherlock Holmes enthusiasts who also follow this column may, in a contemplative moment, have asked themselves whether their hero would have made a good cancer detective. Answer perhaps ‘yes’ in that he was obsessive about sticking to the facts and not guessing and would probably have said that, when tracking down a secretive quarry, you need to be as open-minded as possible in looking for clues. One of his most celebrated efforts at marrying observation with knowledge was his greeting upon first meeting Dr. Watson: “How are you? You have been in Afghanistan, I perceive”. Watson was suitably astonished by this apparent clairvoyance although its basis was in fact rather mundane and only beyond him because, as Sherlock kindly explained, “You see, but you do not observe.”

Holmes-Image-Loupe

Dr. Holmes perchance?

If Watson had paused to wonder whether Holmes’ combination of superiority complex and investigative genius would have fitted him for a career in the medical fraternity, he might have reflected that indeed many internal afflictions do manifest external signs – much as the furtive body language of a felon on a job might mark him out to the observant eye in the throng of bodies pressing into Baker Street underground station. So perhaps the ’tec turned doc could make it in infectious diseases or become a consultant in rheumatoid arthritis. But would he have steered clear of oncology, reasoning that most cancers are without symptoms during their early development and that even he could not observe the invisible?

Lithograph of Baker Street Station   Baker Street Station on the Metropolitan Railway in 1863 (London Transport Museum collection)

Probably, but before taking that decision he would have asked for a tutorial – perhaps from that bright fellow Stephen Paget, who would have explained that cancers are unusual lumps of cells that can often be cut out by surgeons such as himself. But he’d have highlighted the problem that similar growths commonly turn up later at other, secondary, sites in the body – they are what kills most cancer patients and no one has a clue how this happens or what to do about it. Holmes would doubtless have taken a deep suck on his pipe, commented that, as no one appeared to disagree with William Harvey’s 250 year old finding that blood is passed to every nook and cranny of the body by the circulatory system, it scarcely required his giant intellect to deduce that to be the most probable way of spreading tumours. Further observing that cancers develop very slowly, he would have pointed out that it is highly likely that within the body there might be clues – molecular signs that something is amiss – long before overt disease appears. All that was required was a biological magnifying glass and tweezers to spot and pick out rogue cells and molecules. Muttering ‘Elementary’ he would then have asked to be excused to return to the really tricky problem of outsmarting Professor Moriarty.

An Achilles’ heel?

Well, as we have just reviewed in Scattering the Bad Seed, some 130 years after that imaginary encounter the ‘elementary’ way in which tumours spread to form metastases is just beginning to be revealed and, of course, the hope is that eventually this knowledge will lead to ways of treating disseminated cancers or even preventing them. That’s a wonderful prospect but even more exciting are technical advances enabling us to exploit what Sherlock had spotted as something of a cancer Achilles’ heel – namely that, if tumour cells spread via the bloodstream, we need only the right tools (magnifying glass and tweezers) to detect secondary growths almost before they’ve started to form. As most people know, the earlier cancers are caught the more likely they are to be cured, the most critical intervention being before they have spread to form metastases that are the major cause of death.

The things you find in blood

In fact, quite apart from intact tumour cells migrating around the circulation, it’s been known for 40 years that most types of cell in our bodies have the rather odd quirk of releasing short bits of their DNA into the circulation. Cancer cells do this too and these chromosome fragments reflect the genetic mayhem that is their hallmark. How DNA gets out of the nucleus and then across the outer membrane of the cell isn’t known but it does – and the bits of nucleic acid act as messengers, being taken up by other cells that respond by changing their behaviour. In Beware of Greeks we saw that DNA fragments released by leukemia cells can help those cells escape from the bone marrow into circulating blood.

There’s yet another sort of cellular garbage swishing around in our circulation: small sacs like little cells that contain proteins and RNAs (nucleic acids closely related to DNA). These small, secreted vesicles are called exosomes and in fact they’re not at all rubbish but are also messengers, communicating with other cells by fusing and transferring their contents. So exosomes are another form of environmental educator.

Going fishing

The problem has been that until very recently it has not been possible to fish out tumour cells or DNA from the vast number of cells in blood (we’ve each got over 20 trillion red blood cells in our five litres or so). However, an exciting new development has been the application of silicon chip technology to the detection of circulating tumour cells (CTCs). The chips, which are the size of a microscope slide (10 x 2 cm), have about 80,000 microscopic columns etched on their surface that are coated with an array of antibodies that stick to molecules expressed on the surface of CTCs. By incorporating the chips into small flow cells it’s possible to capture about 100 CTCs from a teaspoon of blood – that’s pulling out one tumour cell from a background of a billion (109) normal cells.

CTC CHIP

Tumour cell isolation from whole blood by a CTC-chip. Whole blood is circulated through a flow cell containing the capture columns (Stott et al., 2010)

This microfluidics approach can also be used to isolate tumour cell DNA. For this the coatings are short stretches of artificial DNA of different sequences: these bind to free DNA in the same way that two strands of DNA stick together to make the double helix.

This remarkable technology may offer both the most promising way to early tumour detection and of determining responses to drugs. It also provides a bridge between proteomic and genomic technologies because DNA, captured directly or extracted from isolated cells, can be used for whole genome sequencing. If this system is able to capture cells from most major types of tumour it will indeed provide a rapid route from early detection through genomic analysis to tailored chemotherapy without the requirement for tumour biopsies. In Signs of Resistance we noted that it’s possible to track the response of secondary tumours (metastases) to drug treatment (chemotherapy) using this method of pulling out tumor DNA from blood and sequencing it.

The really optimistic view is that chip isolation of DNA or tumour cells may be a means to cancer detection years, perhaps decades, before any other test would show its presence. By following up with the power of sequencing, the hope is that appropriate drug cocktails can be devised to, so to speak, nip the tumour in the bud.

Wizard’s secret

By the way, Conan Doyle eventually revealed the method behind Sherlock’s wizardry: Watson was a medical man but walked with a military bearing: the skin on his wrists was fair but his face tanned and haggard and he held his left arm in a stiff and unnatural manner. So here was a British army doctor who had served in the tropics (or somewhere equally hot) and been wounded. In 1886 where would that have been? Oh yes, of course. Afghanistan.

Reference

Stott, S.L., Hsu, C.-H., Tsukrov, D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, M.S., Shah, A.M., Smas, M.E., Korir, G.K., Floyd, Jr., F.P., Gilman, A.J., Lord, J.B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L.V., Lee, R.J., Isselbacher, K.J., Maheswaran, S., Haber, D.A. and Toner, M. (2010). Isolation of circulating tumour cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America 107, 18392-18397.

Dyslexic DNA

Writing in code

Did you notice a few months back that some boffins had written a book in DNA? No, that’s not a typo: what they did was to transcribe a 53,000 word book – plus pictures – into a synthetic DNA sequence. In essence, they re-wrote the book in binary by taking the four bases that make the genetic code of life and setting A and C to equal zero whilst G or T represented one. The result wasn’t without its typos: in the just over five million bits needed there were ten mistakes. So rather better than my touch-typing then. But there was a real commercial point behind this exercise, aside from showing, yet again, the astonishing coding capacity of our genetic material. One gram of DNA (you’ve got 500 grams) can store more than 100 billion DVDs, so not merely is it the ultimate in compacted data but it’s amazingly tough stuff – think of sequencing the woolly mammoth, in the freezer for thousands of years – by comparison with the latest software updates for my computer which usually mean I can’t read files 10 years old. And if I dig out my 20 year old 35 mm slides from the attic, chances are they’ll adorned by fungal growths.

Genetic switches

So DNA’s great for long-term information storage but this was by no means the first attempt to use biological molecules in ways we normally associate with electronic devices. When the code of DNA is ‘read’ to make an intermediate (RNA) from which, in turn, proteins can be made it’s acting as a biological transistor: a switch and amplifier that responds to an input signal. The DNA code ‘reader’ is a molecular machine called RNA polymerase (RNA pol) that moves step-wise along a strand of DNA, adding units one at a time to a growing molecule of RNA, complementary in sequence to the DNA template. This process is called ‘transcription’. In its wake another molecular machine can ‘translate’ the RNA codes into protein. RNA pol therefore ‘flows’ along a strand of DNA rather like a current of electrons through a transistor and, because RNA can makes lots of copies of a protein, the system has built-in amplification. Input control is via proteins that stick to segments of DNA called promoters and ‘switch on’ RNA pol (i.e., an analog input). After that the sequence of DNA itself can, in effect, say either ‘go’ or ‘stop’: short sequence motifs can wave RNA pol through or make it stall. The output signal is the protein made – and if you make green fluorescent protein (GFP) you can shine light on it and measure how much you’ve got from the fluorescence emitted.

Over the last few years a number of such gadgets have been made and inserted into bacterial cells to work as simple digital logic gates. In electronic-speak these have included DNA AND gates (giving a high output only if two inputs are high) and OR gates (a high output if one or both the inputs to the gate are high). They’re genetic transistors, processing signals like the logic gates built from transistors that, in combinations of billions, are the basis of computer memory and microprocessors.

Throwing a DNA switch

Throwing a DNA switch

So what’s new?

For biological gates the problem has been that each needs its own construct (a DNA plasmid) and to make more complicated bits {e.g., EXCLUSIVE OR (XOR) gates (high output only if the inputs are different) or EXCLUSIVE NOR (XNOR) gates (output high only if inputs equal)} lots of constructs are required, each having to be persuaded to enter bacteria and to work in a stable fashion.

Step forward Drew Endy and colleagues from Stanford who, by dint of some very clever molecular biology, have combined multiple logic elements into a single construct – which they call a ‘transcriptor’. The switching capacity of their devices comes from integrases – enzymes made by viruses that infect bacteria – that can invert (flip) short stretches of DNA. These can be designed as switchable ‘go’ or ‘stop’ signals for RNA pol. Back in the 1940s Barbara McClintock, working on maize, discovered that stretches of DNA can be shifted around within the genome – they’re called ‘transposons’ – and integrases do the same thing as the enzymes that switch transposons around. McClintock remains, incidentally, the only lady to win a Nobel Prize for Medicine on her own. The great thing about integrases is that they can be turned on simply by adding the appropriate activator to the medium surrounding the cells.

This remarkable advance means that essentially any kind of gate can be built into a single, synthetically made genetic transistor, regulated by a range of integrases. The potential is somewhat mind-boggling but includes being able to monitor in real time the effects of drugs on the behavior of individual cells.

When John Bardeen, Walter Brattain and William Shockley (a Brit by origin but really another Stanford man) invented the transistor (they got the 1956 Nobel Prize in Physics) they can have had little idea of the impact it would have on mankind. But they really would have been staggered to know that, 60 years on, their successors would be shaping our genetic material to act as semiconductors in living cells.

Anything else?

So, as far as I can see, Drew Endy and his chums have done pretty well everything except build an EOR gate that responds to any input with “Don’t blame me”. But they’re such smart guys I bet they’ve got one of those in the fridge too – it was just that the journal editor lacked a sense of humour and wouldn’t publish it. Science editors have form in this department – recall the tale of Albert Szent-Gyorgyi who, whilst a member of my department back in the 1920s, isolated ascorbic acid (the vitamin that stops you getting scurvy) and, convinced it was a sugar (so it should have the suffix -ose – it’s actually made from glucose by oxidation) but not knowing the exact structure, sent his results to the Biochemical Journal calling it ‘ignose’. When the editor said ignose was silly Albert suggested ‘godnose’, getting a predictable response!

References

http://www.guardian.co.uk/science/2012/aug/16/book-written-dna-codehttp://www.huffingtonpost.com/2013/03/29/biological-computer_n_2981753.html

Bonnet, J., Yin, P., Ortiz, M.E., Subsoontorn, P. and Endy, D. (2013). Amplifying Genetic Logic Gates. Science 28 March 2013 / Page 1/ 10.1126/science.1232758http://www.sciencemag.org/content/early/recent

Junk Store Opened: Millions of Bargains

Many moons ago, when I was nobbut a lad and sequencing the human genome was 30 years away, we nevertheless knew that there was something very odd about our genetic code. We knew there were three thousand million base pairs but that only a tiny fraction of that (a few percent) was necessary to encode all the proteins found in our bodies. What was the rest doing? As a sort of explanation two terms came into vogue: ‘selfish DNA’ (meaning stuff that just reproduced itself because it was there) and ‘junk DNA’ meaning everything that didn’t code for proteins.

One of the few predictions I’ve made that turned out to be right was embodied in a refusal to use either term – and if there’s anyone who can recall anything of my supervisions (that is, what the rest of the world calls tutorials) they might back me up on this. It’s true that, as time went by, we increasingly appreciated that non-coding DNA is important in controlling whether individual genes are switched on or off – that is, whether they make RNA and from that protein, according to sequences embedded in the DNA, or whether they make nothing.

Ewen's scheme

However, getting a real grip on what all that seemingly spare DNA is doing has turned out to be so challenging that it is only now, 10 years after the first human sequence was produced, that we have hard data to go on. That unveiling has come from a follow-up called the ENCODE (Encyclopedia Of DNA Elements) programme – an international cooperative of extraordinary scale, with its heart at The Sanger Centre just outside Cambridge and with its head one Ewan Birney. Birney is a computational biologist – a new breed of scientist whose strength lies in bringing to bear methods that make sense of the vast amounts of data generated by current DNA sequencing techniques.

A glance at the summary of what ENCODE involved suggests that, in the unlikely event of his getting bored with science, Birney would make a pretty good fist as Secretary-General of the United Nations. I’d like to try and persuade you that scientists are wonderful and lofty forms of our species but, alas, in fact they are generally ambitious, driven, self-centred, ruthless and intolerant. To make matters worse, quite a few are very smart. To get nearly 500 of the world’s best to sink self-interest and focus on one aim in a multi-national, multi-lingual, multi-racial collaboration that requires rigorous assessment of data and in which the scope for individual glory is almost negligible might well qualify as the greatest feat of man-management in the history of the human race.

So Birney’s a star but what did the world get for its money? The short answer is that we now know that, far from being ‘junk’, most of our DNA – over 80% – does something useful. Whilst only 1.6% carries protein-coding genes, much of the rest is important in regulating the activity of proteins generated from coding genes. The regulatory activity comes in the form of RNA: as we noted just now, DNA makes RNA makes protein – and the DNA sequences involved are called genes. But there’s a second class of genes, ones that transcribe DNA sequence into RNA – but then things stop. The RNA doesn’t go on to direct the making of proteins but rather goes off and regulates well, almost everything. So this second group are non-coding genes – because they don’t ‘make’ proteins.

How does the RNA of non-coding genes work? Well, in essence by sticking to other RNAs and to proteins themselves. What ENCODE has revealed is a panoply of types of RNA that comes in a wide range of sizes and has a finger in almost every bit of the cellular pie. So these varied RNAs act as cellular controllers at many levels and because cancers result from the subversion of normal control you would correctly guess that mutations in non-coding genes can be every bit as important as those that affect protein function directly.

Does this help in dealing with cancer and are there any bargains in the junk store? The short-term answers are ‘no’ and ‘lots – in theory’. As units of this army of RNAs help to control how we work normally, they also can go wrong – become mutated – so we have a new set of potential players in the cancer game. Detecting when individual RNAs join in won’t be so difficult: the real cancer challenge now is not target-spotting, it’s making the bullets to hit the targets.

Reference

Maher, B. (2012). ENCODE: The human encyclopaedia. Nature 489, 46-48.

Birney, E. (2012). The making of ENCODE: Lessons for big-data projects. Nature 489, 49-51.

Don’t Read This!!

Now here’s something I bet you’ve never thought about. Well I certainly hadn’t when I stepped outside the boundary of ‘science’ and into the world of ‘pop sci’ – aka Betrayed by Nature.

Professional evisceration

To get sciency stuff published you have to endure the dread process of ‘peer review’. Your paper is sent to experts who apply their giant brains, formidable grasp of the subject and sadistic natures to a completely impartial assessment of whether it is of sufficient merit to appear in whichever journal you have favoured with your attentions. Or, put another way, it gets put through a mincer that takes fiendish delight in dissecting every syllable, making ‘suggestions’ that amount to a total re-write and demanding a further series of experiments (to ‘solidify’ the data) that would see you past retirement, if not into the beckoning abyss beyond. If, by combining grovelling submission, bartering, and deviousness you finally get the thing into print, what happens next? Nothing. Not a squeak. The vast majority of papers disappear as surely as if dropped into the Mariana Trench in a lead-lined box. Just occasionally, if a few of the co-authors have Nobel Prizes, you might find your opus clambering up one or another citation index, meaning that some other bunch of numpties have mentioned it in their own feeble scribblings – doesn’t mean they actually read it, of course. And that’s it.

Pop in public

But out in the real world ‘pop’ stuff comes out – and then gets reviewed – so it’s like writing chick-lit (I’ve no idea what that is but I quite fancy having a go). And the critics turn up from all over the place. Their views get emailed to you by well-intentioned friends, someone in the coffee queue regales you (“just seen ….”) or you stumble over one when your surfing fingers inadvertently hit ‘sci reviews’ instead of ‘sex reviews.’

So Monty Python was wrong – you do expect The Spanish Inquisition – that any minute you’ll be dragged naked through the streets of Cambridge – well, emotionally at least. So, after all that, a lady friend has told me to be a man (very naughty to have peeked) and to bravely blog reviews received.

You have been warned!

Reviews of BETRAYED BY NATURE The War on Cancer by Robin Hesketh Palgrave Macmillan 272 pp. £16.99 (2012)

1.  William Hanson, MD, author of The Edge of Medicine: Dr. Hesketh brings an expert’s easy familiarity and depth to this comprehensive, at times almost affectionate, look at a deadly adversary. He tells us what cancer is, what causes it, what we can do to prevent it and how we are systematically battling the disease on many fronts.

2.  Kirkus Reviews (The World’s Toughest Book Critics) 1 March 2012:  Informative, optimistic tour of the science of cancer: Hesketh (Biochemistry/Cambridge Univ.), familiar to lay audiences from BBC radio and TV, opens Part 1 with a capsule history of cancer, ranging from papyrus records of ancient Egypt to the scientific breakthroughs of the 21st century. He follows with a look at the distribution of different types of cancers around the world and what the data suggests about cancer’s causes. Matters get technical in Part 2, but the author assumes little previous knowledge on the part of readers; he takes time to explain DNA, RNA, genes, chromosomes and how some genes mutate into cancer genes. In Part 3 he tackles cancer cells and the behavior of tumors. Throughout Parts 2 and 3, relatively simple diagrams and some black-and-white photographs help to clarify the technical discussions. For most readers, the final section – “Where Are We? Where Are We Going?” – will be of greatest interest. Here Hesketh explains how genome sequencing has begun to change how cancers are diagnosed and classified, and the promise this holds for therapy. We are at the beginning, he writes, of the era of personalized medicine, which holds the promise that we will someday be able to detect the threat of cancer long before it manifests itself by sequencing an individual’s genome and using that information to design an individualized therapeutic strategy. The back matter includes a helpful glossary and two delightful odes to cancer, one written in 1964 by the noted geneticist (and cancer patient) J.B.S. Haldane and the other a modern version by Hesketh.

Despite the author’s occasionally breezy style – “cancer is jolly complicated” – this is not a book to breeze through, but rather a solid account of how cancer works, how it has been combated and what the future holds for its treatment.

https://www.kirkusreviews.com/search/?q=hesketh&x=16&y=13

3.  Nature 485, 579 (31 May 2012): It afflicts one in three people globally and kills more than 7 million a year. Yet cancer is, at base, simply an abnormal growth of cells. In this admirably clear overview, biochemist Robin Hesketh gives us the history, basic science and characteristics of cancer cells, charting how tumours spread and detailing genetics, detection, therapies and drugs. There is much to fascinate — from eighteenth-century physician Percivall Pott’s deduction that there was a link between soot and scrotal cancer in chimney sweeps, to the challenges of treating the biological “hodgepodge” that is a tumour.

http://libsta28.lib.cam.ac.uk:2157/nature/journal/v485/n7400/full/485579a.html

4.  John P. Moore, Professor of Microbiology and Immunology, Weill Cornell: In Betrayed by Nature, Robin Hesketh melds medicine, science and history to create a clear and highly readable explanation of the complexities of cancer.

5.  Interview on The Leonard Lopate Show: lopate050812apod.mp3

6.  For Amazon reviews see their web site.