Twenty more winks

In Episode One we alerted ourselves to the large amount of evidence saying that a good night’s sleep really is essential if you wish to reduce your chances of a wide variety of medical misfortunes. But what do we know about how molecules respond to sleep disruption to produce such nasty effects?

Molecular Clocks

Life on earth depends on energy sent forth by the sun and, in synchrony with the rotation of our planet, many of the inner workings of mammals fluctuate over each period of roughly 24 hours. This pattern is called the circadian clock, its most obvious manifestation being the sleep-wake cycle. Over the years considerable evidence has accumulated that the link between shift-work and cancer is probably due to circadian rhythm disruption and suppression of nocturnal production of a hormone called melatonin. All living things make melatonin (in mammals in the pineal gland of the brain) and it signals through a variety of protein receptors on cells to regulate the sleep-wake cycle but it also plays a role in protecting DNA from damage.

Melatonin production is regulated by the circadian oscillator, itself controlled by two sets of proteins that control each other’s expression in a feedback loop. Thus one pair, CLOCK and BMAL1, activates Cryptochrome and Period. They in turn repress CLOCK and BMAL1 – the upshot being that the activities of both pairs oscillate over a day-night cycle: as one goes up the other comes down. These central regulators are encoded by evolutionarily ancient genes (two for Cryptochromes and three for Period proteins). In plants and insects CRY1 responds to light but in mammals CRY1 and CRY2 work independently of light to inhibit BMAL1-CLOCK.

Two interlocked feedback loops control clock protein expression

CRY-CLOCK

OUTCOME: ≈ 24 hour cycle expression of PER & CRY

BMAL1 & CLOCK 12 hours out of phase

Alarming the Clock

So having sounded the alarm that just one night’s sleep shortage has obvious effects, what do the genes make of it? Well, the short answer is they get upset. A recent study took blood samples from a group of normal people and found that more than 700 genes (about 3% of our total number) significantly changed their level of expression over 1 week of insufficient sleep (5.7 h) by comparison with 1 week of sufficient sleep (8.5 h). About two-thirds were reduced whilst one-third was up-regulated (made more of their protein product). Unsurprisingly, among those that went down were the major clock regulators. It’s worth noting that the sleep perturbation in this experiment was relatively mild – intended to be similar to that experienced by many individuals. The genes most strongly affected play roles in a wide range of biological processes – DNA structure (hence gene expression), metabolism, stress responses and inflammation. The responses of genes to changes in sleep patterns are not the result of mutation (i.e. changes in the sequence of DNA)  but, at least in part, they’re caused by small changes in the structure of DNA. {These are epigenetic modifications – any modification of DNA, other than in the sequence of bases, that affects how an organism develops or functions. They’re brought about by tacking small chemical groups either on to some of the bases in DNA itself or on to the proteins (histones) that act like cotton reels around which DNA wraps itself}. Thus there is evidence for gene silencing by hyper-methylation of CRY2 (adding methyl groups (CH3) to its DNA) and the converse effect of hypo-methylation (removing methyl groups) of CLOCK occurs in women engaged in long-term shift work and is associated with an increased risk of breast cancer.

Inflaming the Problem

The cells that mediate inflammation and immune responses also have circadian clocks – meaning that normally these processes are rhythmically controlled and clock disruption (for example by sleep loss) affects this pattern. Disabling the clock in mice (by knocking out CRY altogether) switches on the release of pro-inflammatory messengers and knocking out one of the Period genes (PER2) makes mice cancer-prone – reflecting the fact that MYC (the key proliferation driver) is directly controlled by circadian regulators and is consistently elevated in the absence of PER2.

Clock Faces

The mass that comprises a tumour is a mixture of cells – cancer cells and normal cells attracted to the locale – so it’s a quite abnormal environment and in particular there may be regions where the supply of oxygen and nutrients is limited. This is sensed as a stress by the cells, one response being to lower protein production until normal conditions are restored. If this doesn’t happen within a given time the response switches to one leading to cell suicide. One way in which overall protein output can be reduced is by activating an enzyme (IRE1α) that breaks down code-carrying messenger RNAs that direct assembly of new proteins. Remarkably, it has emerged that one of the mRNAs targetted by IRE1α is the core circadian clock gene, PER1. The degradation of PER1 mRNA means that less PER1 protein is made, which in turn disrupts the clock. However, it seems that PER1 has other roles that include helping the cell suicide response – a major anti-cancer defence. All of which suggests that disruption of the IRE1α/ PER1 balance might have serious consequences. Indeed IRE1α mutations have been found in a variety of cancers including brain tumours in which low levels of PER1 are an indicator of poor prognosis. The IRE1α mechanism coincidentally activates the transcription factor XBP1 (as well as PER1 mRNA decay) and one target of XBP1 is the gene encoding a messenger (CXCL3) that makes blood vessels sprout offshoots. Thus this master regulator suppresses cell death, activates proliferation (lowering PER1 deregulates MYC) and promotes new blood vessel formation.

A Tip for Snoozing

If you’re still wide awake it just goes to prove the utter fascination of biology – but today’s story says that you have to find ways of, if not falling asleep, at least courting insensibility (as Christopher Fry put it). If it’s a real problem for you may I make a really radical suggestion? Turn to our physicist friends and select from their recent literary avalanche. A ‘brief history of …’ something or other will do fine. It’s a knock-out! Sweet dreams!!

References

Möller-Levet, C.S., Archer, S.N., Bucca, G., Laing, E.E., Slak, A., Kabiljo, R., Lo, J.C.Y., Santhi, N., von Schantz, M., Smith, C.P. and Dijk, D.-J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. PNAS 110, E1132-E1141.

Fu, L.N. et al. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111, 41-50.

Zhu, Y. et al. (2011). Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int, 28, 852–861.

Pluquet, O. et al. (2013). Posttranscriptional Regulation of PER1 Underlies the Oncogenic Function of IREα. Cancer Res., 73, 4732-4743.

Advertisements

Twenty winks

Not now obviously but after you’ve read the first episode of this absorbing tale you may feel a nap is in order, despite the fact that in Wake up at the back we noted that snoring can give you cancer.

Setting aside that hazard, the general finding is that most people require seven or eight hours of sleep to function optimally. Fall short of that, to less than six hours even for one night, and we all know that the consequences may include a degree of grumpiness helped along by a tendency to clumsiness and generally heightened incompetence. If you happen to suffer from hypertension you could measure another result because your blood pressure will be even higher than usual for the rest of the day. However, these are all reversible states, so that real problems only come with more extended sleep deprivation and there is much evidence that this can profoundly affect memory, creativity and emotional stability, as well as leading to heart disease, diabetes and obesity. The molecular drive for the latter is that folk who are short of sleep have lower levels of the hormone leptin (which tells the brain you’ve had enough to eat) but higher levels of ghrelin (appetite stimulant). One week of only four hours nightly kip converts healthy young men to pre-diabetics in terms of their insulin and blood sugar levels.

The cancer link

To all of which must be added the dribble of reports over many years that disrupted sleep patterns, such as result from shift-work, may increase the risk of a variety of cancers (these include breast, prostate, bowel and endometrial cancers and also non-Hodgkin’s lymphoma). The effects are moderate (that is, the risk rise is small – typically up to 20%), making these findings suggestive rather than conclusive, although they are bolstered by a considerable number of studies on animals. So sleep, or rather lack of it, is yet another of these things that seems to affect cancer but for which really hard evidence is lacking. It’s not a9f5f190difficult to see why. You can’t put a number on ‘a good night’s sleep’ (though you can now get phone apps that record your every snort and contortion) nor do we understand the biological consequences of sleep disruption, and then there are the perpetual problems that everyone’s different and cancers take years to show themselves. However, you can put a figure on how you feel about sleep: our friends at the wonderful Karolinska Institute in Stockholm have come up with a Sleepiness Scale (1 = very alert, 9 = very sleepy, great effort to keep awake) – which could replace the traditional grunt when asked ‘How are you?’ ‘Oh, much as usual, about eight on the Karolinska Scale.’

Sleeping Off Breast Cancer

Trawling the literature it seems that the majority of cancer/sleep studies focus on the breast and a word about two of the most recent will suffice to paint the picture. In a large group of Japanese ladies over the age of 40 those who said they slept for less than six hours were markedly more likely to develop breast cancer than those who slept longer. Over nine hours a night (sleep that is) even appeared to give a degree of protection.

The main culprit for the breast cancer/sleep link is shift work, illustrated by the Danish military where women working night-shifts are more prone to breast cancer than those with normal sleep patterns and there is an upward trend in risk with years of night-shift work.

An association with ovarian cancer has also been reported although, somewhat perplexingly, that study didn’t show that the risk got bigger the longer night-shifts were worked. This rather confusing picture may reflect individual variation. As we all know, some folk are ‘larks’ – up at the crack of dawn – my lady wife is one – whereas others are ‘owls’ who perform better the later it is (no prize for guessing what kind of bird I am – bit of domestic incompatibility there!). It may be that ‘owls’ suffer less from night-shift perturbation and they may therefore be more likely to opt for that mode of work – and indeed the Danish study found that ‘larks’ on night-shifts were more likely to get breast cancer. As if that’s not enough, irregular shift patterns make it more difficult for women to conceive and working only nights increases the chances of miscarrying.

Similar results have been found for other cancers, notably of the bowel – 50% more likely to occur in those who sleep an average of less than six hours a night than those who zzzz for over seven. Put another way, the less than six hours risk is about the same as having a first degree relative with the disease or eating lots of red meat – and similar to that for breast cancer.

Mu Treadmill

th-2

th-1

Mice Sleep Too

It’s not a bad idea to keep in mind that we are very similar to mice – we’ve got more or less the same number of genes and exercising (on a treadmill for example) helps to keep at least some cancers at bay. Another similarity is that sleep deprivation upsets the works so that, for example, in models of colon cancer it reverses the beneficial effects of moderate exercise.

So insomnia is no laughing matter, however it comes about, and next time we’ll put two and two together by looking at the molecular story – after which you really may need forty winks.

 References

Kakizaki, M. et al. (2008).  Sleep duration and the risk of breast cancer: the Ohsaki Cohort Study. Br J Cancer  99, 1502–1505.

Hansen, J. and Lassen, C.F. (2012). Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup Environ Med., 69, 551–556.

Bhatti, P. et al. (2012). Nightshift work and risk of ovarian cancer. Occup Environ Med., 0:1–7. doi:10.1136/oemed-2012-101146.

Thompson, C.L. et al. (2011). Short Duration of Sleep Increases Risk of Colorectal Adenoma. Cancer 117, 841–847.

Zielinski, M.R. et al. (2012). Influence of chronic moderate sleep restriction and exercise on inflammation and carcinogenesis in mice. Brain, Behavior, and Immunity 26, 672–679.