Lethal ZIP codes

In Keeping Cancer Catatonic we retailed how, over 125 years ago, the London physician Stephen Paget came up with his ‘seed and soil’ idea to explain why it was that when cancers spread to distant sites around the body by getting into the circulation they didn’t simply stick to the first tissue they came across. Paget had spotted that cancers tend to have preferred sites for spreading: tumours of the eye tend to travel to the liver, rather than the much handier brain, and breast cancers, Paget’s speciality, commonly spread to the liver but also to the lungs, kidneys, spleen and bone. So his idea was that certain distant secondary sites are somehow made more receptive to tumor growth, just as soil can be prepared for seeds to sprout.

So the key question became ‘how?’ and it’s hung in the cancer air for well over a century during which we’ve made very little progress towards an answer – and it is crucial because the business of tumour cells spreading (metastasizing) causes most cancer deaths (over 90%).

But, at long last, things have started to move, largely due to the efforts of David Lyden and his colleagues at Weill Cornell Medical College. Their first astonishing contribution was to show that cells in primary tumours release messengers into the circulation and these, in effect, tag what will become landing points for wandering tumour cells – i.e., the target sites are determined before any tumour cells actually set foot outside the confines of the primary tumour.

After that seismic revelation the story advanced a step further (in Scattering the Bad Seed) with some molecular detail of how the sites are marked – an effect Lyden has christened ‘Bookmarking cancer’ – and how when tumour cells do settle in their new niche they may be kept dormant for many years before starting to expand.

Carrying the flag

The next chapter in the story, as retailed in Holiday Reading (4) – Can We Make Resistance Futile?, revealed that the message is carried by small sacs – like little cells – called exosomes that are released from tumour cells. These float around the circulation until they find their target site, whereupon they plant the flag by setting off a chain reaction that produces a sticky protein – fibronectin – a kind of glue for immune cells and tumour cells.

That is all truly amazing stuff but, as we noted in Holiday Reading (4) – Can We Make Resistance Futile?, a recurring theme in science is that one answer merely poses the next question – in this case ‘what’s the messenger?’

As in all the best thrillers, the authors have kept us in suspense to the last, helped presumably by their not knowing the answer. But in this week’s Nature (Oct. 28, 2015) comes the denoument to this whodunit.

Mister postman look and see …

Many moons ago an outfit called the Marvelettes had a No. 1 hit with Please Mr. Postman and somewhat later the Fab Four did a re-hash that met with equal success. Perhaps we should have asked them how nature would go about directing little packages around the body. John, Ringo and the lads would, with their earthy, Liverpudlian logic, have pointed out the triviality of the problem of exosome addressing. ‘It’s not like you’re sending stuff all over the world, is it? You’ve only got a few targets – the major organs of the body. So a dead simple code will do. You know your messengers are proteins – ’coz they do everything – OK? So, pick a protein that comes in two bits with a few variants of each: mix and match and there’s yer postcodes. Now … what was that ditty about yellow subsurface vessels …’

And so it came to pass …

And the messenger is …

A family of proteins called integrins whose job is to span the membranes of cells, thereby promoting cell-cell interactions. They are indeed made of two different chains stuck together (called α (alpha) and β (beta)) and the upshot is that our cells can make about 24 unique integrins – more than enough to form a coded address system to direct tumour cells around the body. Well done lads!

What Ayuko Hoshino, David Lyden and their many collaborators did was to tag exosomes released from various types of cancer cell with a fluorescent dye and inject them into mice. The fluorescent label enabled them to track the exosomes and it turned out that, for a variety of cancer cells (breast, pancreatic, colorectal, lung, melanoma and pediatric) the exosomes travelled to the organs associated with metastasis (e.g., breast cancer exosomes stuck in the lungs, pancreatic cancer exosomes in the liver, etc). In other words exosome spread mimicked the pattern of the tumour from which they were derived. Once they had landed the exosomes set about reprogramming the organ sites to make a fertile microenvironment capable of supporting tumor cell growth in a new colony.

When they looked at the exosome proteins they found a particular member of the integrin family flagged each organ-specific site. Thus α6β4 promotes lung metastasis, αvβ5 homes in on the liver, αvβ3 on the brain, etc.

MapFinding a home

To spread around the body (metastasise) primary tumours first release small sacs (exosomes) carrying protein tags (integrins). Moving through the circulatory system the integrin tags home in to specific addresses found on different organs. The effect of exosomes sticking to target sites is to prepare the ground for cells released by the tumour to adhere and colonise.

Down the tube

You could think of primary tumours as being a bit like us when we move to a new city and try to find a des. res. in a place you don’t know. We could just ramble round the subway system until something catches our eye but that might take for ever. Much more efficient is to ask someone with local knowledge where would be good spots to target. For disseminating tumours their exosomes are the scouts who do the foot-slogging: the protein signatures on the surface of these small, tumour-secreted packages home in on postcodes that define a desirable locale for metastatic spread.

Shooting the messenger

An obvious question is ‘If exosomes are critical in defining metastatic sites, can you block their action – and what happens when you do?’ In preliminary experiments Hoshino & Co showed that either knockdown of specific integrins or blocking the capacity of these proteins to stick to their targets (with a specific antibody or short synthetic peptides) significantly reduced exosome adhesion, thereby blocking pre-metastatic niche formation and liver metastasis.

A new beginning?

We described these fabulous results as the denouement but, of course, it isn’t. As Mr. Churchill remarked in a somewhat different context: ‘Now this is not the end.’ It is rather a step to answering an old question but it’s incredibly exciting. If screening for exosomes leads to the detection of cancer not just years but perhaps decades earlier than can be achieved by present methods and if blocking their action can keep metastasis at bay, then the field of cancer will be utterly transformed.


Hoshino, A. et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature doi:10.1038/nature15756.

Ruoslahti, E. (1996). RGD and Other Recognition Sequences for Integrins. Annual Review of Cell and Developmental Biology 12, 697-715.


Trouble With The Neighbours

It may seem odd to the point of negligence that a problem mankind has been grappling with since at least the time of the ancient Egyptians should, within the last ten years or so, be shown to have a whole new dimension, scarcely conceived hitherto. This hidden world, often now called the tumour microenvironment, is created as solid tumours develop and attract a variety of normal cells from the host to form a cellular cloud that envelops them and supports their growth (as we noted in Cooperative Cancer Groupies). We shouldn’t beat ourselves up for being slow to grasp its existence yet alone its importance – just take it as a reminder of the multi-faceted complexity that is cancer.

It’s true that over one hundred years ago the London physician Stephen Paget came up with his “seed and soil” idea – the notion that when cells escape from a primary tumour and spread to secondary sites (metastasis) they need to find a suitable spot that will nourish their growth, otherwise they perish – a fate that befalls most of them, fortunately for us.

But in the twenty-first century …

Perceptive though that idea was, it didn’t relate to the goings on in the vicinity of primary tumours – where the current picture is indeed of a cosmopolitan crowd of cellular groupies being recruited as the tumor starts to grow such that they infiltrate and closely interact with the cancer cells. The groupies are attracted by chemical messengers released by tumour cells – but it becomes a two-way communication, with messenger proteins shuttling to and fro between the different cell types.

Tumor uenvirThe tumour neighbourhood.

Two-way communication between host cells and tumor cells.

 White blood cells (e.g., lymphocytes and macrophages) are one group that succumbs to the magnetism of tumours. They’re part of the immune response that initially tries to eliminate the abnormal growth but, in an extraordinary transformation, when tumour cells manage to evade this defense the recruited cells change sides so to speak, switching their action to release signals that actively support tumor growth. The idea of boosting the initial anti-tumour response, thereby using the host defence system to increase the efficiency of tumour elimination, is the basis of immunotherapy, a popular research field at present to which we will return in a later piece.

Who’s who among the groupies

The finding that cells flooding into the ambience of a tumour can affect growth of the cancer has focussed attention on identifying all the constituents of the cellular cloud and unraveling their actions. Two recent studies by Claudio Isella from the University of Turin and Alexandre Calon from Barcelona, with their colleagues, have looked at a type of bowel cancer that has a particularly poor prognosis and used an ingenious ploy to lift the veil on who’s doing what to whom in the tumour milieu.

The tumours were initially classified on the basis of a genetic signature – that is, a snapshot of which genes are active in a tumour sample – ‘switched on’ or ‘expressed’ in the jargon – meaning that the information encoded in a stretch of DNA sequence is being used to make a functional gene product, usually a protein. They then used the crafty tactic of implanting human tumour cells into mice (the mice are ‘immunocompromised’ so that they don’t reject the human cells), separated the major types of cell in the tumours that grew and then looked at the genes expressed in those sub-sets. Remarkably, it emerged that, of the cell groupies that infiltrate into primary tumours, fibroblasts are particularly potent at driving tumour growth and metastasis. Fibroblasts are a cell type that makes the molecular scaffold that gives structure and shape to the various tissues and organs in animals – so it’s a surprise, to say the least, to find that cells with a rather mundane day job can play an important role in cancer progression. In this model system the sequence differences between corresponding human and mouse genes confirm that the predominant driver is mouse cells infiltrating the human tumours. Perhaps it shouldn’t be quite such a shock to find fibroblasts dabbling in cancer as we have met cancer-associated fibroblasts (CAFs) before as cells that, by releasing leptin, can promote the growth and invasion of breast cancer cells (in Isn’t Science Wonderful? Obesity Talks to Cancer).

How useful might this be?

As ever, this is just one more small step. However, the other key finding from this work is that a critical signal for the CAFs is a protein called transforming growth factor beta (TGFβ) and a small molecule that blocks its signal inhibits metastasis of human tumour cells in the mouse model. So yet again the cancer biologist’s best friend gives a glimmering of hope for human therapy.


Isella, C. et al. (2015). Stromal contribution to the colorectal cancer transcriptome. Nature Genet. http://dx.doi.org/10.1038/ng.3224

Calon, A. et al. (2015). Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nature Genet. http://dx.doi.org/10.1038/ng.3225

The Hay Festival

According to the Hay Festival  a recording of my talk ‘Demystifying Cancer’ on Wednesday 28th May should be available on their web site shortly and it can also be heard on the university site. However, I thought it might be helpful to post a version, not least for the for the rather breathless lady who arrived at the book signing session apologising for missing the lecture because she’d got stuck in mud. So for her and perhaps for many others I had the privilege of chatting to afterwards, read on …

 The Amazing World of Cells, Molecules … and CancerOpening pic

One of the biggest influences on my early years was the composer and conductor Antony Hopkins, who died a few days ago. Most of what I knew about music by the time I was 15 came from his wonderfully clear dissections of compositions in the series Talking About Music broadcast by the BBC Third Programme. When he was axed by the Beeb in 1992 for being ‘too elitist’ – yes, they talked that sort of drivel even then – Hopkins might have wished he’d been a biologist. After all, biology must be the easiest subject in the world to talk about. Your audience is hooked from the outset because they know it’s about them – if not directly then because all living things on the planet are interlinked – so even the BBC would struggle to make an ‘elitism’ charge stick. They know too that it’s beautiful, astonishing and often funny – both from what they see around them and also, of course, courtesy of David Attenborough. So it’s not a surprise when you show them that the micro-world of cells and molecules is every bit as wonderful.

The secret of life

What does come as a bit of a shock to most non-scientists is when you explain the secret of life. No, that’s not handing round pots of an immortalization elixir – much better, it’s outlining what’s sometimes rather ponderously called the central dogma of molecular biology – the fact that our genetic material (aka DNA) is made from only four basic units (most easily remembered by their initials: A, C, G and T – humans have over three thousand million of these stuck together). This is our ‘genome’ and the ‘genetic code’ enshrined in the DNA sequence makes us what we are – with small variations giving rise to the differences between individuals. The genetic code carries instructions for glueing together another set of small chemicals to make proteins. There are 20 of these (amino acids) and they can be assembled in any order to make proteins that can be thousands or even tens of thousands of amino acids long. These assemblies fold up into 3D shapes that give them specific activities. Proteins make living things what they are – they’re ‘the machines of life’ – and their infinite variety is responsible for all the different species to have appeared on earth. Can the basis of life really be so simple?

The paradox of cancer

Turning to cancer, a three word definition of ‘cells behaving badly’ would do fine. A more scientific version would be ‘cells proliferating abnormally.’ That is, cells reproducing either when they shouldn’t, or more rapidly than normal, or doing so in the wrong place. The cause of this unfriendly behavior is damaged DNA, that is, alteration in the genetic code – any such change being a ‘mutation’. If a mutation affects a protein so that it becomes, say, hyperactive at making cells proliferate (i.e. dividing to make more cells), you have a potential cancer ‘driver’. So at heart cancer’s very simple: it’s driven by mutations in DNA that affect proteins controlling proliferation. That’s true even of the 20% or so of cancers caused by chronic infection – because that provokes inflammation, which in turn leads to DNA damage.

The complexity of cancer arises because, in contrast to several thousand other genetic diseases in which just a single gene is abnormal (e.g., cystic fibrosis), tumour cells accumulate lots of mutations. Within this genetic mayhem, relatively small groups of potent mutations (half a dozen or so) emerge that do the ‘driving’. Though only a few ‘driver mutations’ are required, an almost limitless number of combinations can arise.

Accumulating mutations takes time, which is why cancers are predominantly diseases of old age. Even so, we should be aware that life is a game of genetic roulette in which each individual has to deal with the dice thrown by their parents. The genetic cards we’re dealt at birth may combine with mutations that we pick up all the time (due to radiation from the sun and the ground, from some foods and as a result of chemical reactions going on inside us) to cause cancers and, albeit rarely, in unlucky individuals these can arise at an early age. However, aside from what Mother Nature endows, humans are prone to giving things a helping hand through self-destructive life-style choices – the major culprits, of course, being tobacco, alcohol and poor diets, the latter being linked to becoming overweight and obese. Despite these appalling habits we’re living longer (twice as long as at the beginning of the twentieth century) which means that cancer incidence will inevitably rise as we have more time to pick up the necessary mutations. Nevertheless, if we could ban cigarettes, drastically reduce alcohol consumption and eat sensibly we could reduce the incidence of cancers by well over a half.

How are we doing?

Some readers may recall that forty-odd years ago in 1971 President Nixon famously committed the intellectual and technological might of the USA to a ‘War on Cancer’ saying, in effect, let’s give the boffins pots of money to sort it out pronto. Amazing discoveries and improved treatments have emerged in the wake of that dramatic challenge (not all from Uncle Sam, by the way!) but, had we used the first grant money to make a time machine from which we were able to report back that in 2013 nearly six hundred thousand Americans died from cancer, that the global death toll was over eight million people a year and will rise to more than 13 million by 2030 (according to the Union for International Cancer Control), rather less cash might subsequently have been doled out. Don’t get me wrong: Tricky Dicky was spot on to do what he did and scientists are wonderful – clever, dedicated, incredibly hard-working, totally uninterested in personal gain and almost always handsome and charming. But the point here is that, well, sometimes scientific questions are a little bit more difficult than they look.

Notwithstanding, there have been fantastic advances. The five year survival rates for breast and prostate cancers have gone from below 50% to around 90% – improvements to which many factors have contributed including greater public awareness (increasing the take-up of screening services), improved surgical and radiology methods and, of course, new drugs. But for all the inspiration, perspiration and fiscal lubrication, cancer still kills over one third of all people in what we like to refer to as the “developed” world, globally breast cancer killed over half a million in 2012 and for many types of cancer almost no impact has been made on the survival figures. In the light of that rather gloomy summary we might ask whether there is any light at the end of the tunnel.

The Greatest Revolution

From one perspective it’s surprising we’ve made much progress at all because until just a few years ago we had little idea about the molecular events that drive cancers and most of the advances in drug treatment have come about empirically, as the scientists say – in plain language by trial and error. But in 2003 there occurred one of the great moments in science – arguably the most influential event in the entire history of medical science – the unveiling of the first complete DNA sequence of a human genome. This was the product of a miraculous feat of international collaboration called The Human Genome Project that determined the order of the four units (A, C, G and T) that make up human DNA (i.e. the sequence). Set up in 1990, the project was completed by 2003, two years ahead of schedule and under budget.

If the human genome project was one of the most sensational triumphs in the history of science what has happened in the ensuing 10 years is perhaps even more dazzling. Quite breathtaking technical advances now mean that DNA can be sequenced on a truly industrial scale and it is possible to obtain the complete sequence of a human genome in a day or so at a cost of about $1,000.

These developments represent the greatest revolution because they are already having an impact on every facet of biological science: food production, microbiology and pesticides, biofuels – and medicine. But no field has been more dramatically affected by this technological broadside than cancer and already thousands of genomes have been sequenced from a wide range of tumours. The most striking result has been to reveal the full detail of the astonishing genetic mayhem that characterizes cancer cells. Tens of thousands or even hundreds of thousands of mutations featuring every kind of molecular gymnastics imaginable occur in a typical tumour cell, creating a landscape of stunning complexity. At first sight this makes the therapeutic challenge seem daunting, but all may not be lost because the vast majority of this genetic damage plays no role in cancer development (they’re ‘passenger’ mutations) and the power of sequencing now means they can be sifted from the much smaller hand of ‘driver’ mutations. From this distillation have emerged sets of ‘mutational signatures’ for most of the major types of cancers. This is a seismic shift from the traditional method of assessing tumours – looking directly at the cells after treating them with markers to highlight particular features – and this genetic approach, providing for the first time a rigorous molecular basis for classifying tumours, is already affecting clinical practice through its prognostic potential and informing decisions about treatment.

A new era

One of the first applications of genomics to cancer, was undertaken by a group at The Wellcome Trust Sanger Institute near Cambridge (where the UK part of the Human Genome Project had been carried out), who screened samples of the skin cancer known as malignant melanoma. This is now the fifth most common UK cancer – in young people (aged 15 to 34) it’s the second most common – and it killed over 2,200 in 2012. Remarkably, about half the tumours were found to have a hyperactivating mutation in a gene called BRAF, the effect being to switch on a signal pathway so that it drives cell proliferation continuously. It was a remarkable finding because up until then virtually nothing was known about the molecular biology of this cancer. Even more amazingly, within a few years it had lead to the development of drugs that caused substantial regression of melanomas that had spread to secondary sites (metastasized).

This was an early example of what has become known as personalized medicine – the concept that molecular analysis will permit treatment regimens to be tailored to the stage of development of an individual’s cancer. And maybe, at some distant time, the era of personalized medicine will truly come about. At the moment, however, we have very few drugs that are specific for cancer cells – and even when drugs work initially, patients almost invariably relapse as tumours become resistant and the cancer returns – one of the major challenges for cancer biology.

It behoves us therefore to think laterally, of impersonal medicine if you like, and one alternative approach to trying to hit the almost limitless range of targets revealed by genomics is to ask: do tumour cells have a molecular jugular – a master regulator through which all the signals telling it to proliferate have to pass. There’s an obvious candidate – a protein called MYC that is essential for cells to proliferate. The problem with stopping MYC working is that humans make about one million new cells a second, just to maintain the status quo – so informed opinion says that blocking MYC will kill so many cells the animal will die – which would certainly fix cancer but not quite in the way we’re aiming for. Astoundingly, it turns out in mice at least it doesn’t work like that. Normal cells tolerate attenuation of MYC activity pretty well but the tumour cells die. What a result!! We should, of course, bear in mind that the highway of cancer therapy is littered with successful mouse treatments that simply didn’t work in us – but maybe this time we’ll get lucky.

An Achilles’ heel?

In defining cancers we noted the possibility that tumour cells might proliferate in the wrong place. So important is this capacity that most cancer patients die as a result of tumour cells spreading around the body and founding secondary colonies at new sites – a phenomenon called metastasis. Well over 100 years ago a clever London physician by the name of Stephen Paget drew a parallel between the growth of tumours and plants: ‘When a plant goes to seed, its seeds are carried in all directions; but they can only live and grow if they fall on congenial soil.’ From this emerged the “seed and soil” theory as at least a step to explaining metastasis. Thus have things languished until very recent findings have begun to lift the metastatic veil. Quite unexpectedly, in mouse models, primary tumours dispatch chemical messengers into the blood stream long before any of their cells set sail. These protein news-bearers essentially tag a landing site within the circulatory system on which the tumour cells touch down. Which sites are tagged depends on the type of tumour – consistent with the fact that human cancers show different preferences in metastatic targets.

These revelations have been matched by stunning new video methods that permit tumour cells to be tracked inside live mice. For the first time this has shone a light on the mystery of how tumour cells get into the circulation – the first step in metastasis. Astonishingly tumour cells attach themselves to a type of normal cell, macrophages, whose usual job is to engulf and digest cellular debris and bugs. The upshot of this embrace is that the macrophages cause the cells that line blood vessels to lose contact with each other, creating gaps in the vessel wall through which tumour cells squeeze to make their escape. This extraordinary hijacking has prognostic value and is being used to develop a test for the risk of metastasis in breast cancers.

The very fact that cancers manifest their most devastating effects by spreading to other sites may lay bare an Achilles’ heel. Other remarkable technical developments mean that it’s now possible to fish out cancer cells (or DNA they’ve released) from a teaspoonful of circulating blood (that’s a pretty neat trick in itself, given we’re talking about fewer than 100 tumour cells in a sea of several billion cells for every cubic millimeter of blood). Coupling this to genome sequencing has already permitted the response of patients to drug therapy to be monitored but an even more exciting prospect is that through these methods we may be moving towards cancer detection perhaps years earlier than is possible by current techniques.

As we’ve seen, practically every aspect of cancer biology is now dominated by genomics. Last picIt’s so trendy that anyone can join in. Songs have been written about DNA and you can even make a musical of your own genetic code, French physicist Joel Sternheimer having come up with a new genre – protein music – in which sequence information is converted to musical notes. Antony Hopkins, ever receptive to new ideas, would have been enthralled and, with characteristic enthusiasm, been only too happy to devote an episode of Talking About Music to making tunes from nature.

Seeing the Invisible: A Cancer Early Warning System?

Sherlock Holmes enthusiasts who also follow this column may, in a contemplative moment, have asked themselves whether their hero would have made a good cancer detective. Answer perhaps ‘yes’ in that he was obsessive about sticking to the facts and not guessing and would probably have said that, when tracking down a secretive quarry, you need to be as open-minded as possible in looking for clues. One of his most celebrated efforts at marrying observation with knowledge was his greeting upon first meeting Dr. Watson: “How are you? You have been in Afghanistan, I perceive”. Watson was suitably astonished by this apparent clairvoyance although its basis was in fact rather mundane and only beyond him because, as Sherlock kindly explained, “You see, but you do not observe.”


Dr. Holmes perchance?

If Watson had paused to wonder whether Holmes’ combination of superiority complex and investigative genius would have fitted him for a career in the medical fraternity, he might have reflected that indeed many internal afflictions do manifest external signs – much as the furtive body language of a felon on a job might mark him out to the observant eye in the throng of bodies pressing into Baker Street underground station. So perhaps the ’tec turned doc could make it in infectious diseases or become a consultant in rheumatoid arthritis. But would he have steered clear of oncology, reasoning that most cancers are without symptoms during their early development and that even he could not observe the invisible?

Lithograph of Baker Street Station   Baker Street Station on the Metropolitan Railway in 1863 (London Transport Museum collection)

Probably, but before taking that decision he would have asked for a tutorial – perhaps from that bright fellow Stephen Paget, who would have explained that cancers are unusual lumps of cells that can often be cut out by surgeons such as himself. But he’d have highlighted the problem that similar growths commonly turn up later at other, secondary, sites in the body – they are what kills most cancer patients and no one has a clue how this happens or what to do about it. Holmes would doubtless have taken a deep suck on his pipe, commented that, as no one appeared to disagree with William Harvey’s 250 year old finding that blood is passed to every nook and cranny of the body by the circulatory system, it scarcely required his giant intellect to deduce that to be the most probable way of spreading tumours. Further observing that cancers develop very slowly, he would have pointed out that it is highly likely that within the body there might be clues – molecular signs that something is amiss – long before overt disease appears. All that was required was a biological magnifying glass and tweezers to spot and pick out rogue cells and molecules. Muttering ‘Elementary’ he would then have asked to be excused to return to the really tricky problem of outsmarting Professor Moriarty.

An Achilles’ heel?

Well, as we have just reviewed in Scattering the Bad Seed, some 130 years after that imaginary encounter the ‘elementary’ way in which tumours spread to form metastases is just beginning to be revealed and, of course, the hope is that eventually this knowledge will lead to ways of treating disseminated cancers or even preventing them. That’s a wonderful prospect but even more exciting are technical advances enabling us to exploit what Sherlock had spotted as something of a cancer Achilles’ heel – namely that, if tumour cells spread via the bloodstream, we need only the right tools (magnifying glass and tweezers) to detect secondary growths almost before they’ve started to form. As most people know, the earlier cancers are caught the more likely they are to be cured, the most critical intervention being before they have spread to form metastases that are the major cause of death.

The things you find in blood

In fact, quite apart from intact tumour cells migrating around the circulation, it’s been known for 40 years that most types of cell in our bodies have the rather odd quirk of releasing short bits of their DNA into the circulation. Cancer cells do this too and these chromosome fragments reflect the genetic mayhem that is their hallmark. How DNA gets out of the nucleus and then across the outer membrane of the cell isn’t known but it does – and the bits of nucleic acid act as messengers, being taken up by other cells that respond by changing their behaviour. In Beware of Greeks we saw that DNA fragments released by leukemia cells can help those cells escape from the bone marrow into circulating blood.

There’s yet another sort of cellular garbage swishing around in our circulation: small sacs like little cells that contain proteins and RNAs (nucleic acids closely related to DNA). These small, secreted vesicles are called exosomes and in fact they’re not at all rubbish but are also messengers, communicating with other cells by fusing and transferring their contents. So exosomes are another form of environmental educator.

Going fishing

The problem has been that until very recently it has not been possible to fish out tumour cells or DNA from the vast number of cells in blood (we’ve each got over 20 trillion red blood cells in our five litres or so). However, an exciting new development has been the application of silicon chip technology to the detection of circulating tumour cells (CTCs). The chips, which are the size of a microscope slide (10 x 2 cm), have about 80,000 microscopic columns etched on their surface that are coated with an array of antibodies that stick to molecules expressed on the surface of CTCs. By incorporating the chips into small flow cells it’s possible to capture about 100 CTCs from a teaspoon of blood – that’s pulling out one tumour cell from a background of a billion (109) normal cells.


Tumour cell isolation from whole blood by a CTC-chip. Whole blood is circulated through a flow cell containing the capture columns (Stott et al., 2010)

This microfluidics approach can also be used to isolate tumour cell DNA. For this the coatings are short stretches of artificial DNA of different sequences: these bind to free DNA in the same way that two strands of DNA stick together to make the double helix.

This remarkable technology may offer both the most promising way to early tumour detection and of determining responses to drugs. It also provides a bridge between proteomic and genomic technologies because DNA, captured directly or extracted from isolated cells, can be used for whole genome sequencing. If this system is able to capture cells from most major types of tumour it will indeed provide a rapid route from early detection through genomic analysis to tailored chemotherapy without the requirement for tumour biopsies. In Signs of Resistance we noted that it’s possible to track the response of secondary tumours (metastases) to drug treatment (chemotherapy) using this method of pulling out tumor DNA from blood and sequencing it.

The really optimistic view is that chip isolation of DNA or tumour cells may be a means to cancer detection years, perhaps decades, before any other test would show its presence. By following up with the power of sequencing, the hope is that appropriate drug cocktails can be devised to, so to speak, nip the tumour in the bud.

Wizard’s secret

By the way, Conan Doyle eventually revealed the method behind Sherlock’s wizardry: Watson was a medical man but walked with a military bearing: the skin on his wrists was fair but his face tanned and haggard and he held his left arm in a stiff and unnatural manner. So here was a British army doctor who had served in the tropics (or somewhere equally hot) and been wounded. In 1886 where would that have been? Oh yes, of course. Afghanistan.


Stott, S.L., Hsu, C.-H., Tsukrov, D.I., Yu, M., Miyamoto, D.T., Waltman, B.A., Rothenberg, M.S., Shah, A.M., Smas, M.E., Korir, G.K., Floyd, Jr., F.P., Gilman, A.J., Lord, J.B., Winokur, D., Springer, S., Irimia, D., Nagrath, S., Sequist, L.V., Lee, R.J., Isselbacher, K.J., Maheswaran, S., Haber, D.A. and Toner, M. (2010). Isolation of circulating tumour cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America 107, 18392-18397.

Keeping Cancer Catatonic

Over a century ago there lived in London an astute physician by the name of Stephen Paget. He was one of those who may or may not be envied in being part of a super-talented family. His Dad, Sir James Paget, was pals with Charles Darwin and, together with Rudolph Virchow, laid the foundations of modern pathology, though today medical students usually encounter his infinitesimal immortality through several diseases that bear his name. These include a rare condition, Paget’s disease of the breast, in which malignant cells form in the skin of the nipple creating an itchy rash, usually treatable by surgery. His Uncle George had been Regius Professor of Physic at Cambridge and he had several brothers, two of whom became bishops. Fortunately Stephen continued the medical thread of the family and Paget’s passion became breast cancer.

A Key Question

Paget had that invaluable scientific gift of being able to pinpoint a key question – in his case ‘What is it that allows tumour cells to spread around the body?’ – and it was such a good question that to this day we don’t have a complete answer. That it happens had been known long before the appearance of Paget Junior. René-Théophile-Hyacinthe Laënnec, French of course, in the early years of the 19th century described how skin cancer could spread to the lungs before he went on to invent the stethoscope in 1816. The mother of this invention was a young lady whom he described as having a ‘great degree of fatness’ that made her heartbeat inaudible by the then conventional method of placing ear to chest. Using a piece of paper rolled into a tube as a bridge, Laënnec was somewhat taken aback that the beat was more distinct than he’d ever heard before. Needless to say, medicine being a somewhat reactionary profession, not all its practitioners had ears tuned to receive this advance with glee but in the end, of course, it caught on and we can therefore award Laënnec first prize in reducing human cumulative embarrassment. It was another French surgeon, Joseph Récamier, who subsequently coined the term metastasis, (to be precise ‘métastase’) to describe the formation of secondary growths derived from a primary tumour.

Early Ideas about Metastasis

The notion that primary tumours could give rise to a diaspora gradually took root but it was not until 1840 that the Munich-born surgeon Karl Thiersch showed that it was actually cells – malignant cells – that wandered off and found new homes. Rudolf Virchow had come up with the idea that spreading was via a ‘juice’ released by primaries that somehow converted normal cells at other sites into tumours. As Virchow was jolly famous, having not only made the study of disease into a science but also discovered leukemia, it took a while for Thiersch to triumph, notwithstanding the evidence of Laënnec and others. Funnily enough, and as quite often happens in scientific arguments, it now looks as though both were right if for ‘juice’ you substitute ‘messengers’ – that is, chemicals dispatched by tumour cells – as we shall see.

Paget’s attention had been drawn to this subject through his observations on breast cancer, and he’d taking as a starting point the most obvious question: ‘How do tumour cells know where to stick?’ Or, as he elegantly phrased it in a landmark paper of 1889: ‘What is it that decides what organs shall suffer in a case of disseminated cancer?’ The simplest answer would be that it just depends on anatomy: when cells leave a tumour and get into the circulation they stick to the first tissue they meet. But in looking at over 700 cases he’d found this just didn’t happen and that secondary growths often appeared in the lungs, kidneys, spleen and bone. Paget acknowledged the uncommonly prescient suggestion a few years earlier by Ernst Fuchs that certain organs may be ‘predisposed’ for secondary cancer and concluded that ‘the distribution of secondary growths was not a matter of chance.’ This led him to a botanical analogy for tumour metastasis: ‘When a plant goes to seed, its seeds are carried in all directions; but they can only live and grow if they fall on congenial soil.’ From this, then, emerged the ‘seed and soil’ theory of metastasis, its great strength being the image of interplay between tumour cells and normal cells, their actions collectively determining the outcome. Rather charmingly, Paget concluded his paper with: ‘The best work in the pathology of cancer is now done by those who are studying the nature of the seed. They are like scientific botanists; and he who turns over the records of cases of cancer is only a ploughman, but his observation of the properties of the soil may also be useful.’


Bookmarking cancer: Primary tumours mark sites around the body to which they will spread (metastasize) by sending out chemical signals that create sticky ‘landing sites’ (red protein A) on target cells. Cells released from the bone marrow carry proteins B and C. B attaches to A and tumour cells ‘land’ on C. Cells may remain quiescent in a new site for years or decades, their growth suppressed by signals (e.g., TSP-1) released from nearby blood vessels. Only when appropriate activating signals dominate (e.g., TGFbeta) is secondary tumour growth switched on.

Finding a Landing Strip

For well over a century Paget’s aphorism of  ‘seed and soil’ pretty well summed up our knowledge of metastasis. It’s obvious that before any rational therapy can be designed we need to unravel the molecular detail but we’ve had to wait until the twenty-first century for any further significant insight into the process. As so often in science, the hold-up has been largely due to waiting for the appropriate combination of methods to be developed – in this case fluorescently tagged antibodies to detect specific proteins in cells and tissues and genetically modified mice.

In the forefront of this pursuit has been David Lyden and his colleagues at Weill Cornell Medical College and other centers and their most extraordinary finding is that cells in the primary tumour release proteins into the circulation and these, in effect, tag what will become landing points for wandering cells. Extraordinary because it means that these sites are determined before any tumour cells actually set foot outside the confines of the primary tumour. These are chemical messengers rather equivalent to Virchow’s ‘juice’: they don’t change normal cells into tumour cells but they do direct operations. However, it’s a bit more complicated because, in addition to sending out a target marker, tumours also release proteins that signal to the bone marrow. This is the place where the cells that circulate in our bodies (red cells, white cells, etc.) are made from stem cells. The arrival of signals from the tumour causes some cells to be released into the circulation; these carry two protein markers on their surface: one sticks to the pre-marked landing site, the other to tumour cells once they appear in the circulation. It’s a double-tagging process: the first messenger makes a sticky patch for bone marrow cells that appear courtesy of another messenger, and they become the tumour cell target. It’s molecular Velcro: David Lyden calls it ‘cellular bookmarking.’

Controlling Metastatic Takeoff

Tumour cells that find a new home in this way, after they’ve burrowed out of the circulation, could in principle then take off, growing and expanding as a ‘secondary.’ However, and perhaps surprisingly, generally they do the exact opposite: they go into a state of hibernation, remaining dormant for months or years until some trigger finally sets them off. The same group has now modeled this ‘pre-metastatic niche’ for human breast cancer cells, showing that the switch between dormancy and take-off is controlled by proteins released by nearby blood vessels. The critical protein that locks tumour cells into hibernation appears to be TSP-1 (thrombospondin-1). As long as TSP-1 is made by the blood vessel cells metastatic growth is suppressed. This effect is overridden by stimuli that turn on new vessel growth and in so doing switch secretion from TSP-1 to TGFB (transforming growth factor beta). Now proliferation of the disseminated tumour cells is activated and the micro-metastasis becomes fully malignant. It should be said that this is a model system and may possibly bear little relation to what goes on in real tumours. However, the fact that specific proteins that are, moreover, highly plausible candidates, can control such a switch strongly suggests its relevance and also highlights potential targets for therapeutic manipulation.

Stranger Than Fiction

The system for directing tumour cells to a target seems extraordinarily elaborate. Given that tumour cells cannot evolve in the sense of getting better at being metastatic – they just have to go with what they’ve got – how on earth might it have come about? We don’t know, but the most likely explanation is that they are taking advantage of natural defense mechanisms. Although tumours start from normal cells, the first reaction of the body is to see them as ‘foreign’ – much as it does bugs that get into a cut – and the response is to switch on inflammation and an immune response to eliminate the ‘invader.’

Perhaps what is happening in these mouse models is that the proteins released by the tumour cells are just a by-product of the genetic disruption in cancer cells. Nevertheless, they may signal ‘damage somewhere in the body’. That at least would explain why the bone marrow decides to release cells that are, in effect, a response to the tumour. The second question is trickier: Why should tumours release proteins that mark specific sites? We’ve known since Dr. P’s studies that cells from different tumours do indeed head for different places and it may just be that the messengers arising in the genetic mayhem happen to reflect the tissue of origin. The mouse models, encouragingly, show that the target changes with tumour type (e.g., swap from breast to skin and the cells go somewhere else). In other words, tumours send out their own protein messengers that set up sticky landing strips in different places around the circulation.

As for take-off, it may be that newly arrived tumour cells simply adapt to the style of their neighborhood. By and large, the blood vessels are pretty static structures: they don’t go in for cell proliferation unless told to do so by specific signals, as happens when you get injured and need to repair the damage. TSP-1 appears to be a ‘quiescence’ signal, telling cells to sit tight. The switch to proliferation comes when that signal is overcome by TGFB, activating both blood vessels and tumour. All of which would delight Paget: not only is our expanding picture consistent with ‘seed and soil’ but the control by local signals over what happens next makes his rider that ‘observation of the properties of the soil may also be useful’ spot on.


Kaplan, R.N., Riba, R.D., Zacharoulis, S., Bramley, A.H., Vincent, L., Costa, C., MacDonald, D.D., Jin, D.K., Shido, K., Kerns, S.A., Zhu, Z., Hicklin, D., Wu, Y., Port, J.L., Altork, N., Port, E.R., Ruggero, D., Shmelkov, S.V., Jensen, K.K., Rafii, S. and Lyden, D. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820-827.


Ghajar, C.M. et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology 15, 807–817.