Wonder of the World

Welcome back from our holidays on which, we trust, you had as much fun reading the four refresher pieces as I had writing them. Utter nonsense, of course. I’ve never found writing to be an orgasmic activity but, as they say about cod liver oil, it is good for you. However, whilst we were all improving ourselves on our deck-chairs and sun-loungers, the Tide of Science was waiting for no man: the waves of cancer biology have obliterated our sand castles and are fast approaching our toes. So let’s get on – albeit doing our best to make the segue from vacation to vocation as seamless as possible …..

So, on the subject of holidays, newspapers and magazines rather like the theme of ‘places to visit before you die’ – which is OK in that the world is wonderful and we should appreciate it. But there’s a problem in that one of the modern wonders is being able to see magnificent photos and movies of every far-flung nook, cranny and creature without leaving our sofa. So when we finally do get off our rear ends and chug past the Statue of Liberty on the Staten Island Ferry, zoom into Sydney or rock up to the Taj Mahal, the reaction is likely to be ‘That’s nice: looks just like on tv. Where next?’

Fortunately, being blasé has its limits. The only time I’ve made it to the Grand Canyon the mid-winter sun highlighted the colours of the rock striations so they were breathtaking in a way no photograph could quite capture. In the same vein, everyone should take the Trans-Siberian Railway we’re often told. And so you should but not because you will see houses and churches, rivers and trees that you can’t find on the Internet but because only borne by the train do you begin to sense the immensity of Mother Russia. The fact that the scenery is almost entirely birch trees minimizes distraction: all you can do is contemplate vastness – and the harshness that brings – an unvarying obbligato to Russian life.

A Provodnitsa looking after one of her passengers on The Trans-Siberian Railway

A Provodnitsa looking after one of her passengers on The Trans-Siberian Railway

The thrice-weekly freight at Grand Canyon Station, circa 1970

The thrice-weekly freight at Grand Canyon Station, circa 1970

 

 

 

 

 

 

Not Forgetting

All of which brings us to something else that is also truly a wonder of the world – cancer. If it seems a trifle weird to describe thus what’s usually classed as one of man’s greatest blights, consider this. The drive to control cancer has generated research on a scale unmatched in any other field of science. One upshot, not necessarily at the top of the list, is that we now have a breathtakingly detailed picture of the astonishing adaptability of life  – that is of our genetic material, DNA, and how its calisthenics can promote the most incredible behaviour on the part of individual cells. It’s true, you might point out, that we can see this by simply looking at the living world around us. The power of DNA to carry, in effect, limitless information produces the infinite cellular variety underpinning the staggering range of life that has evolved on earth. {Did you spot just the other day that a school field trip discovered 13 new species of spider in Queensland – yes, thirteen – inevitably headlined by The Sun as Creepy Hauly}

In the new world

But in focusing on cancers – what happens at the molecular level as they develop and how they evade our attempts to control them – the fine detail of this nigh-on incomprehensible power has been revealed as in no other way.

You’ll know what’s coming: the biggest single boost to this unveiling has been the arrival in the twenty-first century of methods for sequencing DNA and identifying which genes are expressed in cells at any given time. I know: in umpteen blogs I’ve gone on about its awe-inspiring power – but it is stunning and we’re at that stage when new developments leave one gasping almost on a monthly basis. The point here is that it’s not that the science keeps getting turned on its head. Far from it: the message remains that cells pick up changes to their DNA and, with time, these cumulative effects may drive them to make more of themselves than they should.

That’s cancer. But what is fantastic is the molecular detail that the ’omics revolution continues to lay bare. And that’s important because, as we have come to recognize that every cancer is unique, ideally we need to provide specifically tailored treatments, and we can only think of doing that when we know all the facts – even if taking them in demands a good deal of lying down in darkened rooms!

You could think of the fine molecular detail of cancers as corresponding to musical ornaments – flourishes that don’t change the overall tune but without which the piece would be unrecognizable. These include trills and turns – and all musicians will know their appoggiaturas from their acciaccaturas. They’re tiny embellishments – but just try removing them from almost any piece of music.

Lapping at your toes

So let’s look at three recent papers that have used these fabulous methods to unveil as never before the life history of cancers. The first is another masterful offering from The Sanger Institute on breast cancer: an in-depth analysis of 12 patients in which each tumor was sampled from 8 different locations. In the main the mutation patterns differed between regions of the same tumour. They extended this by looking at samples from four patients with multi-focal disease (‘foci’ being small clumps of tumour cells). As expected, individual foci turned out to be clearly genetically related to their neighbours but they also had many ‘private mutations’ – a term usually meaning a mutation found only in a single family or a small population. Here the ‘family’ are individual foci that must have arisen from a common ancestor, and you could think of them as a cellular diaspora – a localised spreading – which makes them a kind of metastasis. Quite often the mutations acquired in these focal sub-clones included major ‘driver’ genes (e.g., P53, PIK3CA and BRCA2). In general such potent mutations tend to be early events but in these foci they’ve appeared relatively late in tumour development. This doesn’t upend our basic picture: it’s just another example of ‘anything goes’ in cancer – but it does make the point that identifying therapeutic targets requires high-depth sequencing to track how individual cancers have evolved through continual acquisition of new mutations and the expansion of individual clones.

The authors used ‘coxcomb’ plots to portray these goings-on but they are quite tricky to make head or tail of. So, to avoid detail overload, I’ve converted some into genetic wallpaper, the non-repeating patterns illustrating the breathtaking variety that has evolved.

Wallpaper jpegDecorative DNA. The discs are ‘coxcomb’ plots – a variant of a pie chart. Here the colours and the wedge sizes represent mutations in different regions of four primary breast tumours. Every disc is different so that the message from this genetic wallpaper is of mutational variation not only between cancers but across the different samples taken from a single tumour. I trust that Lucy Yates, Peter Campbell and their colleagues will not be too upset at my turning their work into art (and greatly abbreviating the story): you can read the original in all its wondrous glory in Nature Medicine 21, 751–759.

The first person to come up with this very graphic way of conveying information was Florence Nightingale who, whilst working in Turkey during the Crimean War, realized that soldiers were dying in the hospitals not only from their wounds but, in much greater numbers, from preventable causes including infections, malnutrition and poor sanitation. Her meticulous recording and original presentation of hospital death tolls made her a pioneer in applied statistics and established the importance of sanitation in hospitals.

Something for the gentlemen

Two equally powerful onslaughts from Gunes Gundem, Peter Campbell and their colleagues at The Sanger Institute (again!) and Dan Robinson and pals from the University of Michigan Medical School have revealed the corresponding molecular detail of prostate cancer. Here too the picture is of each region of a tumour being unique in DNA terms. Moreover, they showed that metastasis-to-metastasis spread was common, either through the seeding of single clones or by the transfer of multiple tumour clones between metastatic sites.

Even that miserable old sod Lenin might have brightened at such fabulous science, before reverting to Eeyore mode with the inevitable “What’s to be done?” But it’s a good question. For example, as a general strategy should we try to kill the bulk of the tumour cells or aim for clones that, although small, carry very potent mutations.

Aside from the basic science, there is one quite bright ray of sunshine: about 90% of the mutations linked with the spread of prostate cancer are potentially treatable with existing drugs. And that really is encouraging, given that the disease kills 11,000 in the UK and over 30,000 in the USA every year.

prostate dogWe might also be heartened by the skills of German Shepherd dogs that can, apparently, be persuaded to apply one of their favourite pastimes – sniffing – to the detection of prostate cancer. Point them at a urine sample and 90% of the time they come up with the right answer. Given the well-known unreliability of the prostate-specific antigen blood test for prostate cancer, it’s nice to think that man’s best friend is on the job.

References

Yates, L.R., et al. (2015). Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nature Medicine 21, 751–759.

Robinson, D., et al. (2015). Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 161, 1215–1228.

Gundem, G., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. ICGC Prostate UK Group (2015). Nature 520, 353–357.

Advertisements

A Very Odd Coincidence

UntitledOne of the great pleasures of swanning round giving talks on biology and stuff to anyone who’ll listen is meeting an amazing range of wonderful folk with a seemingly limitless number of interesting and clever questions, asked either at the end of a lecture or, quite often, when they queue up afterwards to raise personal points or chat about their own experiences. Wide-ranging though the topics are, there’s one word I can’t recall coming up even once. No surprise really. It’s a very rare disease, even though it’s a kind of sub-group of the lung cancers that kill more people every year than any other type – over one and a half million world-wide in 2012 when there were 23 new cases in every 100,000 people. In the USA the incidence is 38 per 100,000, in Australia it’s 27. The very rare form is called mesothelioma – that’s the one where there’s almost always a history of exposure to asbestos. Rarely mentioned though it is, mesothelioma came up after a lecture I gave last week in the sumptuous premises of the Union, Universities & Schools Club, just up the road from Circular Quay in Sydney, when a gentleman from the audience revealed that his wife had contracted the disease and described how he was seeking the next round of treatment options for her. He was kind enough to say that he was a follower of my blog but he hadn’t trawled sufficiently far back to track down a piece I wrote about a lady called Heather Von St. James. To my considerable embarrassment, I couldn’t on the spur of the moment recall what I’d called it (What’s it all about?  Serves me right for trying to be clever with titles: the idea of this one was convey Heather’s determination to have a life with her children and husband in spite of being dealt the really rough hand of mesothelioma). What is it all about? In contrast to the overall incidence figures for lung cancer, mesothelioma afflicts just under one white American in every 100,000, so it is indeed pretty unusual. The UK has the highest rate (top of something then!) but Australia comes second with 2.9 new cases of mesothelioma per 100 000. Since the early 1980s over 10,000 Australians have died from the disease and the rate is still rising. It’s predicted to start falling after 2020 but, even so, a further 25,000 Australians are expected to die from it over the next four decades, the majority being men. Now Sydney, as you may recall, is the largest city in Australia and it’s in New South Wales, so you might predict that, if you were going to run into mesothelioma anywhere outside the UK, Sydney would be the spot. But why? Well, NSW was the first state in Australia to mine asbestos and it produced the bulk of the chrysotile (white) and amphibole forms. Asbestos of whatever type is now classed as carcinogenic but it was not until the end of 2003 that the use of all forms of asbestos was banned in Australia. The hazard remains, however, because of the widespread use that had been made of asbestos for construction, both residential and commercial. The risk can be seen from the near doubling of mesothelioma incidence in NSW between 1987 and 2006, with an even bigger increase being seen in women – attributed largely to second-hand exposure. And the freaky happening? The very next day after my conversation at the Universities Club, and completely out of the blue, I received an email from Heather about what she describes as her ‘life’s mission to educate people about this deadly disease’. Having told the story, perhaps the most helpful thing I can do by way of supporting this remarkable lady is to spread the word of her initiative by advertising the web site.

What Took You So Long?

A long, long time ago – 25 years to be precise – I was lucky enough to work for a few months at The University of New England in Armidale, up on the Northern Tablelands of New South Wales. And jolly wonderful it was too. You could see grazing kangaroos from my lab window and I got to play grade cricket! To anyone who’ll listen I can still describe in vivid detail the scoring of my first run in Oz. We’d won the toss and … (that’s quite enough cricket, Ed).

Equally wonderful is the fact that, in part courtesy of The University of Queensland, I’m going again to Oz – this time to do what I didn’t manage then: visit all the major cities. We begin in Brisbane this week giving a lecture in the U of Q’s Global Leadership series (yes really!), explaining the biology of cancer to an audience of largely non-scientists – at least I hope I’ve got the right brief! We end up in Perth in May having, in between if I can stick the pace, given a variety of talks and seminars to the general public, to schools and to cancer research institutes in Sydney, Melbourne and Adelaide. How good is that? Being invited to warble on about one of your favorite subjects whilst touring Oz? Wow!

What’s new?

All of which makes you think a bit about Father Time and what has happened in the interim. Answer quite a lot, of course. Collapse of communism, collapse and resurgence of Australian cricket (that’s your last warning, Ed) and so on but we’re supposed to inform and enthuse about cancer here so how’s that faired, particularly in Australia? Well, in the year I first followed Captain Cook (watch it, Ed) onto the shore of Botany Bay about 60,000 Australians were diagnosed with cancers of one sort or another and some 30,000 died from these diseases. At that time one in three men and one in four women would be directly affected by cancer in the first 75 years of life.

A Cook

Alastair Cook

And now? This time round the estimated numbers are 128,000 and over 43,000 with one in two men/one in three women discovering they have cancer by time they’re 85. All told, cancer accounts for about three in ten Australian deaths – much the same contribution as heart disease. To add to the gloom the numbers are going up not down so the prediction is 150,000 new cancer cases in 2020.

Not a lot and no surprise

Well, you may be thinking, no change there then – or even I told you so. After all, I’m forever in these pieces elaborating on current cancer stories holding forth about how slow is the progress of science: one step forward, two back, more of a shuffle than a step really, and so on. Or as Martin Schwartz more eloquently puts it, describing science as the art of productive stupidity – being ignorant by choice. This follows almost inevitably from the nature of research because working on what we don’t understand puts us in the awkward position of being ignorant. As Schwartz has it, one of the beautiful things about science is that it allows us to bumble along, getting it wrong time after time, and feel perfectly fine as long as we learn something each time. That’s why I keep telling you to ignore the “great breakthough” newspaper headline dribble – that’s just the hacks trying anything to persuade their editors to give them space to promote themselves.

But wait a mo.

All that sounds consistent with the signs that things in Oz have been going backwards at a rate of knots over the last 20-odd years. But hang on. As ever, bare stats can be a bit misleading (remember what Disraeli said). Thus although around 19,000 more people die each year from cancer than 30 years ago, this is due mainly to population growth and aging – Australian life expectancy has gone up by over four years since 1990 (it’s now 82). The death rate from cancers has fallen by more than 16% and the survival rate for many common cancers has increased by 30 per cent in the past two decades. So that’s great: terrific ad for living in Oz and something of a triumph for medical science.

A sunny side in Oz?

What’s more you can put a positive twist on even the gloomy side of the picture by noting that, if indeed there’s strength in unity, Australia’s trends are much the same as everyone else’s in what we like to call the developed world. Well sort of but there’s a serious negative for Australia Fair, as you might put it, something that sticks out like a sore thumb (or an itchy mole) when you glance at the stats. Between 1980 and 2010 the incidence of skin cancer has shot up in Australia by around 60%. The most common type is non-melanoma skin cancer – usually treatable as it generally doesn’t spread around the body. The nasty version is malignant melanoma – which does metastasize, although is essentially curable if caught before some of its cells escape from the primary site. And the really bad news is that it is now the third most common cancer in Australians and in those aged 15-44 years it is the most common cancer. In 2012, over 12,000 Australians were diagnosed with melanoma and it killed over 1,600. This disease is usually set off by ultraviolet light from sunlight (or sunbeds) damaging DNA (i.e. causing mutations) and you will not have missed the allusion to the fact that people with fair skin (or blue or green eyes/red or blond hair) are most at risk.So the current Oz figures are a bit of a blow to Richie Benaud’s campaign of which I made great play in Slip-Slop-Slap Is Not Enough.

220px-Melanoma_vs_normal_mole_ABCD_rule_NCI_Visuals_Online

ABCD rule illustration: On the left side from top to bottom: melanomas showing asymmetry, a border that is uneven, ragged, or notched, coloring of different shades of brown, black, or tan and diameter that had changed in size. The normal moles on the right side do not have abnormal characteristics (no asymmetry, even border, even color, no change in diameter).

Meanwhile in the lab?

It’s pretty sobering for me to reflect that it was only a few years before I went to Oz that the first human cancer gene (oncogene) was discovered. That was RAS, detected in human cancer cells in 1982 by Geoffrey Cooper at Harvard, Mariano Barbacid and Stuart Aaronson at the NIH, Robert Weinberg at MIT and Michael Wigler at Cold Spring Harbor Laboratory. Between then and 2003 several hundred more cancer genes were identified in a huge frenzy of molecular stamp collecting. Then came the human genome sequencing project and in its wake analysis of tumours on a scale and level of detail that is almost stupefying and would have been unimaginable before 2003. To appreciate the mountain of cancer data that has been assembled over that period, screen the literature data base for research papers that have ‘RAS’ in the title: that is, contain significant info relating to that gene. Answer: 76,000. That’s seventy-six thousand separate pieces of research that have made it through all the peer review and editorial machinery to see the light of day in print. And RAS, massive player though it is, is not the biggest. Do the same check for a gene called P53 and the number is: over 145,000!!

Confused? The plot so far …

First up we noted that the cancer burden in Oz has got a lot heavier over the last 25 years, then we reminded you that advances in science are of the snail-like variety – so you shouldn’t be surprised when things seem to go backwards. But, flipping to the other hand, we trotted out another set of figures saying things have actually got much better (life expectancy and cancer survival rates have steadily climbed). Though, switching hands again, melanoma’s gone through the roof. However, going back to the first hand, if we can still locate it, we noted the massive explosion in the facts mountain of cancer biology for which the blue touch paper was only lit about 25 years ago.

And your parliamentary candidate is …

What with all this sleight-of-hand, flip-flopping and U-turning, it occurs to me that I’m shaping up rather well as a prospective politician. I’m quite taken with the idea, especially as if I stood as an MP in my own constituency I’d be up against Andrew Lansley who, as you’ve probably forgotten, was once upon a time Secretary of State for Health. Being a virtuous and helpful soul, when Betrayed by Nature came out I sent him a copy as a gift, a freebie, – figuring that, as a career civil servant and politician who’d become responsible for the nation’s health, he might find it useful to read a basic primer on something that was killing 150,000 UK citizens every year. Thoughtful, you’d say? Indeed. Did I expect to find him on my doorstep next day gushing gratitude and thirsting for more knowledge? Maybe not, even though he only lives round the corner and we have actually met in the dim past. But at least one might have received a note – a one line email, perhaps – from his PA, who can scarcely be too busy to be polite. But no. Nothing. Zippo. So I came up with a brief sentence that summarised my take on this example of voter wooing, or indeed plain good manners, but I can’t remember it now – for the best perhaps. What is it the Bible says about getting narked? Something along the lines of “whoever says, ‘You fool!’ shall be liable to the hell of fire.”

So thank heavens we’ve side-stepped that but nevertheless, Andrew, it really would be a joy to give you a bloody nose – electorally speaking, of course – so let’s just give those credentials one more buffing. We started by lowering your expectations of science with the reminder that things proceed at a snail’s pace {you do realise that common analogy is very unfair on snails? Scientists have shown they can bowl along at a metre an hour (yippee, we do discover things!) – not much slower than your average supermarket trolley-pusher, but here’s the thing. Snail’s pace means they can get round the garden in one night. That’s the whole of their world covered in one go – without mechanical assistance!! Not so slow after all, eh?}. But the flip side is that the genomic era has already seen the development of a number of drugs that are effective against malignant melanoma. They’re not perfect but at least they take us a step further in dealing with this cancer once it has spread around the body.

And the message?

(That’s quite enough politics, Ed). OK. Let’s abandon a promising career and go back to being a scientist with a typically punchy summary. Australia’s wonderful but when it comes to cancer it’s not much different to any other rich country (not really a flip that, just a statement of fact). Folk are living longer so, of course, more of us will ‘get’ cancer but we seem to think that longevity buys us more time to smoke, booze, burn ourselves pink and eat crappy food. Medical science is doing wonders in detection and treatment: at nearly $400 million a year on cancer research, almost a quarter of all health research expenditure in Australia, it jolly well should. But if we don’t do more to help ourselves the cancer burden is going to overwhelm health resources not just ‘down under’ but all over.

Reference

Schwartz, M.A. (2008). The importance of stupidity in scientific research. J Cell Sci 2008 121:1771; doi:10.1242/jcs.033340