Fantastic Stuff

 

It certainly is for Judy Perkins, a lady from Florida, who is the subject of a research paper published last week in the journal Nature Medicine by Nikolaos Zacharakis, Steven Rosenberg and their colleagues at the National Cancer Institute in Bethesda, Maryland. Having reached a point where she was enduring pain and facing death from metastatic breast cancer, the paper notes that she has undergone “complete durable regression … now ongoing for over 22 months.”  Wow! Hard to even begin to imagine how she must feel — or, for that matter, the team that engineered this outcome.

How was it done?

Well, it’s a very good example of what I do tend to go on about in these pages — namely that science is almost never about ‘ground-breaking breakthroughs’ or ‘Eureka’ moments. It creeps along in tiny steps, sideways, backwards and sometimes even forwards.

You may recall that in Self Help – Part 2, talking about ‘personalized medicine’, we described how in one version of cancer immunotherapy a sample of a patient’s white blood cells (T lymphocytes) is grown in the lab. This is a way of either getting more immune cells that can target the patient’s tumour or of being able to modify the cells by genetic engineering. One approach is to engineer cells to make receptors on their surface that target them to the tumour cell surface. Put these cells back into the patient and, with luck, you get better tumour cell killing.

An extra step (Gosh! Wonderful GOSH) enabled novel genes to be engineered into the white cells.

The Shape of Things to Come? took a further small step when DNA sequencing was used to identify mutations that gave rise to new proteins in tumour cells (called tumour-associated antigens or ‘neoantigens’ — molecular flags on the cell surface that can provoke an immune response – i.e., the host makes antibody proteins that react with (stick to) the antigens). Charlie Swanton and his colleagues from University College London and Cancer Research UK used this method for two samples of lung cancer, growing them in the lab to expand the population and testing how good these tumour-infiltrating cells were at recognizing the abnormal proteins (neo-antigens) on cancer cells.

Now Zacharakis & Friends followed this lead: they sequenced DNA from the tumour tissue to pinpoint the main mutations and screened the immune cells they’d grown in the lab to find which sub-populations were best at attacking the tumour cells. Expand those cells, infuse into the patient and keep your fingers crossed.

Adoptive cell transfer. This is the scheme from Self Help – Part 2 with the extra step (A) of sequencing the breast tumour. Four mutant proteins were found and tumour-infiltrating lymphocytes reactive against these mutant versions were identified, expanded in culture and infused into the patient.

 

What’s next?

The last step with the fingers was important because there’s almost always an element of luck in these things. For example, a patient may not make enough T lymphocytes to obtain an effective inoculum. But, regardless of the limitations, it’s what scientists call ‘proof-of-principle’. If it works once it’ll work again. It’s just a matter of slogging away at the fine details.

For Judy Perkins, of course, it’s about getting on with a life she’d prepared to leave — and perhaps, once in while, glancing in awe at a Nature Medicine paper that does not mention her by name but secures her own little niche in the history of cancer therapy.

References

McGranahan et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 10.1126/science.aaf490 (2016).

Zacharakis, N. et al. (2018). Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nature Medicine 04 June 2018.

Advertisements

Lorenzo’s Oil for Nervous Breakdowns

 

A Happy New Year to all our readers – and indeed to anyone who isn’t a member of that merry band!

What better way to start than with a salute to the miracles of modern science by talking about how the lives of a group of young boys have been saved by one such miracle.

However, as is almost always the way in science, this miraculous moment is merely the latest step in a long journey. In retracing those steps we first meet a wonderful Belgian – so, when ‘name a famous Belgian’ comes up in your next pub quiz, you can triumphantly produce him as a variant on dear old Eddy Merckx (of bicycle fame) and César Franck (albeit born before Belgium was invented). As it happened, our star was born in Thames Ditton (in 1917: his parents were among the one quarter of a million Belgians who fled to Britain at the beginning of the First World War) but he grew up in Antwerp and the start of World War II found him on the point of becoming qualified as a doctor at the Catholic University of Leuven. Nonetheless, he joined the Belgian Army, was captured by the Germans, escaped, helped by his language skills, and completed his medical degree.

Not entirely down to luck

This set him off on a long scientific career in which he worked in major institutes in both Europe and America. He began by studying insulin (he was the first to suggest that insulin lowered blood sugar levels by prompting the liver to take up glucose), which led him to the wider problems of how cells are organized to carry out the myriad tasks of molecular breaking and making that keep us alive.

The notion of the cell as a kind of sac with an outer membrane that protects the inside from the world dates from Robert Hooke’s efforts with a microscope in the 1660s. By the end of the nineteenth century it had become clear that there were cells-within-cells: sub-compartments, also enclosed by membranes, where special events took place. Notably these included the nucleus (containing DNA of course) and mitochondria (sites of cellular respiration where the final stages of nutrient breakdown occurs and the energy released is transformed into adenosine triphosphate (ATP) with the consumption of oxygen).

In the light of that history it might seem a bit surprising that two more sub-compartments (‘organelles’) remained hidden until the 1950s. However, if you’re thinking that such a delay could only be down to boffins taking massive coffee breaks and long vacations, you’ve never tried purifying cell components and getting them to work in test-tubes. It’s a process called ‘cell fractionation’ and, even with today’s methods, it’s a nightmare (sub-text: if you have to do it, give it to a Ph.D. student!).

By this point our famous Belgian had gathered a research group around him and they were trying to dissect how insulin worked in liver cells. To this end they (the Ph.D. students?!) were using cell fractionation and measuring the activity of an enzyme called acid phosphatase. Finding a very low level of activity one Friday afternoon, they stuck the samples in the fridge and went home. A few days later some dedicated soul pulled them out and re-measured the activity discovering, doubtless to their amazement, that it was now much higher!

In science you get odd results all the time – the thing is: can you repeat them? In this case they found the effect to be absolutely reproducible. Leave the samples a few days and you get more activity. Explanation: most of the enzyme they were measuring was contained within a membrane-like barrier that prevented the substrate (the chemical that the enzyme reacts with) getting to the enzyme. Over a few days the enzyme leaked through the barrier and, lo and behold, now when you measured activity there was more of it!

Thus was discovered the ‘lysosome’ – a cell-within-a cell that we now know is home to an array of some 40-odd enzymes that break down a range of biomolecules (proteinsnucleic acidssugars and lipids). Our self-effacing hero said it was down to ‘chance’ but in science, as in other fields of life, you make your own luck – often, as in this case, by spotting something abnormal, nailing it down and then coming up with an explanation.

In the last few years lysosomes have emerged as a major player in cancer because they help cells to escape death pathways. Furthermore, they can take up anti-cancer drugs, thereby reducing potency. For these reasons they are the focus of great interest as a therapeutic target.

Lysosomes in cells revealed by immunofluorescence.

Antibody molecules that stick to specific proteins are tagged with fluorescent labels. In these two cells protein filaments of F-actin that outline cell shape are labelled red. The green dots are lysosomes (picked out by an antibody that sticks to a lysosome protein, RAB9). Nuclei are blue (image: ThermoFisher Scientific).

Play it again Prof!

In something of a re-run of the lysosome story, the research team then found itself struggling with several other enzymes that also seemed to be shielded from the bulk of the cell – but the organelle these lived in wasn’t a lysosome – nor were they in mitochondria or anything else then known. Some 10 years after the lysosome the answer emerged as the ‘peroxisome’ – so called because some of their enzymes produce hydrogen peroxide. They’re also known as ‘microbodies’ – little sacs, present in virtually all cells, containing enzymatic goodies that break down molecules into smaller units. In short, they’re a variation on the lysosome theme and among their targets for catabolism are very long-chain fatty acids (for mitochondriacs the reaction is β-oxidation but by a different pathway to that in mitochondria).

Peroxisomes revealed by immunofluorescence.

As in the lysosome image, F-actin is red. The green spots here are from an antibody that binds to a peroxisome protein (PMP70). Nuclei are blue (image: Novus Biologicals)

Cell biology fans will by now have worked out that our first hero in this saga of heroes is Christian de Duve who shared the 1974 Nobel Prize in Physiology or Medicine with Albert Claude and George Palade.

A wonderful Belgian. Christian de Duve: physician and Nobel laureate.

Hooray!

Fascinating and important stuff – but nonetheless background to our main story which, as they used to say in The Goon Show, really starts here. It’s so exciting that, in 1992, they made a film about it! Who’d have believed it?! A movie about a fatty acid!! Cinema buffs may recall that in Lorenzo’s Oil Susan Sarandon and Nick Nolte played the parents of a little boy who’d been born with a desperate disease called adrenoleukodystrophy (ALD). There are several forms of ALD but in the childhood disease there is progression to a vegetative state and death occurs within 10 years. The severity of ALD arises from the destruction of myelin, the protective sheath that surrounds nerve fibres and is essential for transmission of messages between brain cells and the rest of the body. It occurs in about 1 in 20,000 people.

Electrical impulses (called action potentials) are transmitted along nerve and muscle fibres. Action potentials travel much faster (about 200 times) in myelinated nerve cells (right) than in (left) unmyelinated neurons (because of Saltatory conduction). Neurons (or nerve cells) transmit information using electrical and chemical signals.

The film traces the extraordinary effort and devotion of Lorenzo’s parents in seeking some form of treatment for their little boy and how, eventually, they lighted on a fatty acid found in lots of green plants – particularly in the oils from rapeseed and olives. It’s one of the dreaded omega mono-unsaturated fatty acids (if you’re interested, it can be denoted as 22:1ω9, meaning a chain of 22 carbon atoms with one double bond 9 carbons from the end – so it’s ‘unsaturated’). In a dietary combination with oleic acid  (another unsaturated fatty acid: 18:1ω9) it normalizes the accumulation of very long chain fatty acids in the brain and slows the progression of ALD. It did not reverse the neurological damage that had already been done to Lorenzo’s brain but, even so, he lived to the age of 30, some 22 years longer than predicted when he was diagnosed.

What’s going on?

It’s pretty obvious from the story of Lorenzo’s Oil that ALD is a genetic disease and you will have guessed that we wouldn’t have summarized the wonderful career of Christian de Duve had it not turned out that the fault lies in peroxisomes.

The culprit is a gene (called ABCD1) on the X chromosome (so ALD is an X-linked genetic disease). ABCD1 encodes part of the protein channel that carries very long chain fatty acids into peroxisomes. Mutations in ABCD1 (over 500 have been found) cause defective import of fatty acids, resulting in the accumulation of very long chain fatty acids in various tissues. This can lead to irreversible brain damage. In children the myelin sheath of neurons is damaged, causing neurological defects including impaired vision and speech disorders.

And the miracle?

It’s gene therapy of course and, helpfully, we’ve already seen it in action. Self Help – Part 2 described how novel genes can be inserted into the DNA of cells taken from a blood sample. The genetically modified cells (T lymphocytes) are grown in the laboratory and then infused into the patient – in that example the engineered cells carried an artificial T cell receptor that enabled them to target a leukemia.

In Gosh! Wonderful GOSH we saw how the folk at Great Ormond Street Hospital adapted that approach to treat a leukemia in a little girl.

Now David Williams, Florian Eichler, and colleagues from Harvard and many other centres around the world, including GOSH, have adapted these methods to tackle ALD. Again, from a blood sample they selected one type of cell (stem cells that give rise to all blood cell types) and then used genetic engineering to insert a complete, normal copy of the DNA that encodes ABCD1. These cells were then infused into patients. As in the earlier studies, they used a virus (or rather part of a viral genome) to get the new genetic material into cells. They choose a lentivirus for the job – these are a family of retroviruses (i.e. they have RNA genomes) that includes HIV. Specifically they used a commercial vector called Lenti-D. During the life cycle of RNA viruses their genomes are converted to DNA that becomes a permanent part of the host DNA. What’s more, lentiviruses can infect both non-dividing and actively dividing cells, so they’re ideal for the job.

In the first phase of this ongoing, multi-centre trial a total of 17 boys with ALD received Lenti-D gene therapy. After about 30 months, in results reported in October 2017, 15 of the 17 patients were alive and free of major functional disability, with minimal clinical symptoms. Two of the boys with advanced symptoms had died. The achievement of such high remission rates is a real triumph, albeit in a study that will continue for many years.

In tracing this extraordinary galaxy, one further hero merits special mention for he played a critical role in the story. In 1999 Jesse Gelsinger, a teenager, became the first person to receive viral gene therapy. This was for a metabolic defect and modified adenovirus was used as the gene carrier. Despite this method having been extensively tested in a range of animals (and the fact that most humans, without knowing it, are infected with some form of adenovirus), Gelsinger died after his body mounted a massive immune response to the viral vector that caused multiple organ failure and brain death.

This was, of course, a huge set-back for gene therapy. Despite this, the field has advanced significantly in the new century, both in methods of gene delivery (including over 400 adenovirus-based gene therapy trials) and in understanding how to deal with unexpected immune reactions. Even so, to this day the Jesse Gelsinger disaster weighs heavily with those involved in gene therapy for it reminds us all that the field is still in its infancy and that each new step is a venture into the unknown requiring skill, perseverance and bravery from all involved – scientists, doctors and patients. But what better encouragement could there be than the ALD story of young lives restored.

It’s taken us a while to piece together the main threads of this wonderful tale but it’s emerged as a brilliant example of how science proceeds: in tiny steps, usually with no sense of direction. And yet, despite setbacks, over much time, fragments of knowledge come together to find a place in the grand jigsaw of life.

In setting out to probe the recesses of metabolism, Christian de Duve cannot have had any inkling that he would build a foundation on which twenty-first century technology could devise a means of saving youngsters from a truly terrible fate but, my goodness, what a legacy!!!

References

Eichler, F. et al. (2017). Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy. The New England Journal of Medicine 377, 1630-1638.

 

Self Help – Part 2

In the second type of cancer immunotherapy a sample of a patient’s T lymphocytes is grown in the lab. This permits either expansion of the number of cells that recognize the tumour or genetic engineering to modify the cells so they express receptors on their surface that target them to the tumour cell surface. Infusion of these manipulated cells into the patient enhances tumour cell killing. We’re now in the realms of ‘personalized medicine’.

A little more of a good thing

The first of these methods picks up a weakness in the patient’s immune system whereby it makes lymphocytes that kill tumour cells but can’t make enough – their protective effect is overwhelmed by the growing cancer. By taking small pieces of surgically removed tumours and growing them in the lab, it’s possible to select those T cells that have killing capacity. These are expanded over a few weeks to make enough cells to keep on growing when they’re infused back into the patient. The upshot is a hefty boost for the natural anti-tumour defence system. The pioneer of this method, called adoptive cell therapy, is Steven Rosenberg (National Cancer Institute, Bethesda) and it has been particularly effective for melanomas. Responses are substantially improved by treatment with drugs that reduce the white cell count before samples are taken for T cell selection – probably because the system responds by making growth factors to restore the balance and these drive the expansion of the infused cells.

A wonderful benefit of this method is its efficacy against metastases – i.e. tumour growths that have spread from the primary site – perhaps not surprising as it’s what Rosenberg calls a “living” treatment, in other words it just gives a helping hand to what nature is already trying to do.

93. Fig. 1Selecting naturally occurring T cells with anti-tumour activity

Tumour fragments are grown in the laboratory: lymphocytes that kill tumour cells are selected and expanded in culture.  About 6 weeks growth yields enough cells to infuse into the patient.

Gene therapy

A more sophisticated approach to boosting innate immunity is to introduce new genes into the genetic material (the genome) of T cells to target them to tumour cells with greater efficiency. An ordinary blood sample suffices as a starting point from which T cells are isolated. One way of getting them to take up novel genes uses viruses – essentially just genetic material wrapped in an envelope. The virus is ‘disabled’ so that it has none of its original disease-causing capacity but retains infectivity – it sticks to cells. ‘Disabling’ means taking just enough of the original genome to make the virus – a viral skeleton – and then inserting your favourite gene, so the engineered form is just a handy vehicle for carrying genes. No need to panic, therefore, if you see a press headline of the “HIV cures cancer” variety: it just means that the human immunodeficiency virus – well and truly disabled – has been used as the gene carrier.

93. Fig. 2

Genetic modification of blood lymphocytes

T cells are isolated from a blood sample and novel genes inserted into their DNA. The engineered T cells are expanded and then infused into the patient.

 This method of re-directing T cells to a desired target was pioneered by Gideon Gross and colleagues at The Weizmann Institute of Science in Israel in the late 1980s and it has led to sensational recent results in treating chronic lymphocytic leukemia (CLL), albeit in just a few patients so far. To the fore have been Renier Brentjens and his group from the Memorial Sloan-Kettering Cancer Center, New York. The genetic modification they used made the patient’s T cells express an artificial receptor on their surface (called a chimeric antigen receptor). This T cell receptor was designed to stick specifically to a protein known to be displayed on the surface of CLL cells. The result was that the T cells, originally unable to ‘see’ the leukemic cells, now homed in on them with high efficiency. Astonishingly, and wonderfully, the modified cells divide in the patient so that, in effect, their immune system has been permanently super-charged.

A critical part of the strategy is that CLL cells carry a known molecular target but the absence of such defined markers for most cancers is currently a severe limitation. On the bright side, however, this type of gene therapy has now been attempted in at least three different centres and, despite inevitable minor differences in method, it clearly works.

One of the leading figures in gene therapy is Carl June of the University of Pennsylvania. Some of his colleagues have made a brilliant video explaining how it works whilst June himself has described in wonderfully humble fashion what it means to work in this field.

References

Rosenberg, S.A. and Restifo, N.P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62-68.

Gross, G., et al. (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptorswith antibody-type specificity. Proc. Natl. Acad. Sci. U.S.A. 86, 10024–10028.

Brentjens, R.J., et al. (2013). CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med., 5, 177ra38. DOI:10.1126/scitranslmed.3005930.

Kalos, M., et al. (2011). T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73.

Kochenderfer, J.N., et al. (2012). B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood 119, 2709–2720.

 

Self Help – Part 1

It’s not easy to find good things to say about cancer and humour is equally elusive, as those of us who lecture on the subject know very well. But most people are aware of one cheering fact: cancers aren’t transmissible between humans – that is, they’re not like ’flu, venereal diseases and lots of other nasty things we pass around. Thus, if you transplant tumours from one animal to another of the same species (usually mice) generally they don’t grow – in much the same way that transplanted organs (livers, etc.) are rejected by the recipient’s immune system. Transplant rejection occurs because the body mounts an immune response to the foreign (i.e. ‘non-self’) organ: transplantation works when that is reduced by matching donor to recipient as closely as possible and combining that with immunosuppressant drugs.

But here’s an obvious thought: if tumours transferred between animals don’t grow, their immune systems must be doing a pretty good job of recognizing them as ‘non-self’ and killing them off. If that’s true, how about trying to boost the immune response in cancer patients as a therapeutic strategy? It’s such a good idea it’s become the trendiest thing in cancer science, the field being known as immunotherapy.

Immunotherapy

The aim is to give a patient’s immune response a helping hand so it can kill their tumours. The stars of the show are a subset of white blood cells called T lymphocytes: that’s because some of them have the power to kill – they’re ‘cytotoxic T cells’. So the simple plan is to boost either the number or the efficiency of these tumour-killing T cells. The story is complicated by there being lots of sub-types of T cells – most notably T Helper cells (that do what their name suggests: activate cytotoxic T cells) and Suppressor T cells that shut down immune responses.

To get the hang of immunotherapy we need only focus on ways of boosting T Helpers but in passing we can hardly avoid asking “why so complicated?” Well, the immune system has evolved on a tight-rope, trying on the one hand to kill invading organisms whilst, on the other, leaving the cells and tissues of the host untouched. It works amazingly well but it can fall off both ways when either it’s overcome by the genomic gymnastics of cancer or when it exceeds its remit and causes auto-immune diseases – things like type 1 diabetes in which the immune system destroys the cells in the pancreas that make insulin.

Shifting the balance

We’ve seen that T cells (of all varieties) are among the ‘groupies’ attracted to the scene of growing solid tumours (in Cooperative Cancer Groupies and Trouble With The Neighbours) and so the name of the game is how to tweak the balance in that environment towards more efficient tumour cell killing.

Broadly speaking, there are two forms of cancer immunotherapy. In one T cells are removed from the patient, grown to large numbers and then put back into the circulation – called ‘adoptive cell therapy’, we’ll come to it in Part 2. The more widespread approach, sometimes called ‘checkpoint blockade’, uses agents that block inhibitory pathways switched on by tumours – in effect releasing molecular brakes that prevent T cell hyperactivity and autoimmunity. So ‘checkpoint blockade’ is a systemic method – drugs are administered that diffuse throughout the body to find their targets, whereas next time we’ll be talking about ‘personalized medicine’ – using the patient’s own cells to fight his cancer.

There’s one further method – viral immunotherapy – which I wasn’t going to mention but has been in the news lately to the extent that I feel obliged to make a trio with “Blowing Up Cancer” to follow Parts 1 & 2.

There’s nothing new about this general idea. Over 100 years ago the New York surgeon William Coley noticed that occasionally tumours disappeared when patients accidentally picked up post-operative bacterial infections and, from bugs grown in the lab, he made extracts that, injected into solid tumours, caused about one in ten of them to regress, with some patients remaining well for many years thereafter.

A new era

Even so, it took until 1996 before it was shown that blocking an inhibitory signal could unleash the tumour killing power of T cells in mice and it was not until 2011 that the first such agent was approved by the U.S. Food and Drug Administration for treating melanoma. In part the delay was due to the ‘agent’ being an antibody and the time taken to develop ‘humanized’ versions thereof. Antibodies (aka immunoglobulins) are large, Y-shaped molecules made by B lymphocytes that bind with high specificity to target molecules – antigens – humanized forms being engineered so that they are made almost entirely of the human protein sequence and therefore do not provoke an immune response.

92 FigCheckpoint Blockade Activates Anti-Tumour Immunity

Interactions between Receptors A and a suppress T cell activity. Antibodies to these receptors block this signal and restore immune activity against tumour cells.

Unblocking the block

We picture the tumour microenvironment as a congregation of various cell types with chemical messengers whizzing to and fro between them. In addition, some protein (messenger) receptors on cell surfaces talk to each other. The receptors themselves become messengers thus drawing the cells together – essential to bring killer cells into contact with their target. You can think of all these protein-protein interactions as keys inserting into locks or as molecular handshakes – a coming together that passes on information. Antibodies come into their own because they bind to their targets just as avidly as the normal signaling molecules – so they’re great message disruptors.

The sketch shows in principle how this works for two interacting receptors, A and a. The arrival of a specific antibody (anti-A or anti-a) puts a stop to the conversation – and if the upshot of the chat was to decrease the immune response, bingo, we have it! Targeting a regulatory pathway with an antibody enhances anti-tumour responses.

Putting names to targets, CTLA-4 and PD-1 are two key cell-surface receptors that, when engaged, trigger inhibitory pathways and dampen T-cell activity. Antibodies to these (ipilimumab v. CTLA-4; pembrolizumab and nivolumab v. PD-1) have undergone a number of clinical trials and the two in combination have given significant responses, notably for melanoma. So complex is immune response control that it presents many targets for manipulation and a dozen or so agents (mostly antibodies) are now in various clinical trials.

Déjà vu

So the era of immunotherapy has well and truly arrived but, as ever with cancer, it is not quite time to break open the champagne and put our feet up. Whilst combinations of antibodies have given sustained responses, with some patients remaining disease-free for many years, at the moment immunotherapy has only been shown to work in subsets of cancers and even then only a small fraction (about 25%) of patients respond. My correspondent Dr. Markus Hartmann has pointed out that the relatively limited improvements in survival rates following immunotherapy might be significantly enhanced if we took into account the specific genetic background of patients and determined which genes of interest are expressed or switched off. This information should reveal why some patients benefit from immunotherapy whilst others with clinically similar disease do not.

The challenge, therefore, is to characterise individual tumours and their supporting bretheren in terms of the cell types and messengers involved so that the optimal targets can be selected – and, of course, to make the necessary agents. It’s a tough ask, as the sporting fraternity might put it, but that’s what science is about so onwards and upwards with William Coley’s words of 105 years ago writ large on the lab notice board: “That only a few instead of the majority showed such brilliant results did not cause me to abandon the method, but only stimulated me to more earnest search for further improvements in the method.”

I’m grateful to Dr. Markus Hartmann  (Twitter: @markus2910) for constructive comments about this post.

References

Coley, W. B. (1910). The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proceedings of the Royal Society of Medicine  3, 1-48.

Twyman-Saint Victor, C. et al. (2015). Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377.

Wolchok, J.D. et al. (2013). Nivolumab plus Ipilimumab in Advanced Melanoma. N. Eng. J. Med., 369, 122-133.