Bonkers Really … but …


This is just in case you spotted the headline in January 2018: ‘Scientists Counted All The Protein Molecules in a Cell And The Answer Really Is 42. This is so perfect.’ 

Them scientists eh! The things they get up to!! The scallywags in this case were Brandon Ho & chums from the University of Toronto and Signe Dean, the journalist who came up with the headline, was referring, of course, to Douglas Adams’s “Answer to the Ultimate Question of Life …” in The Hitchhiker’s Guide to the Galaxy — though it may be noted that Ho’s paper includes neither the number 42 nor mention of Douglas Adams.

The cult that has evolved around this number is both amusing and bizarre, not least because Adams himself explained that he dreamed 42 up out of the blue. In a different context a while ago (talking about how the way you get to work might affect your life expectancy) I recounted happy evenings spent carousing in The Baron (well, having a quiet jar or two) with Douglas Adams and friends from which it was clear that he was not into abstruse mathematics, astrology or the occult. He just had a vivid imagination.

Anything for a catchy headline but

Aside from the whimsy, is there anything interesting in this paper? Well, yes. Ho & Co studied a type of yeast (Saccharomyces cerevisiae) that is mighty important because it’s been a foundation for brewing and baking since ancient times. So no merry sessions in The Baron of Beef without it! Its cells are about the same size as red blood cells (5–10 microns in diameter) but you can actually see them sometimes as films on the skin of fruit. It’s played a huge role in biology as a ‘model organism’ for studying how we work because the proteins it makes that are essential for life are pretty well identical to those in human cells — so much so that you can swap those that control cell growth and division between the two. Yeast proteins work just fine in human cells and vice versa.


Yeast on the skin of a grape. Photo: Barbara W. Beacham


The question Ho & Co asked was ‘how many protein molecules are there in one cell?’ In the age when you can sequence the DNA of practically anything at the drop of a hat, you might think we’d know the answer already but in fact it’s not been at all clear. Accordingly, what these authors did was to pull together all the relevant studies that have been done to come up with an absolute figure. The answer that emerged was that the number of protein molecules per yeast cell is 4.2 x 107 — which, of course, can also be written as 42 million. Eureka! We have our headline!! Albeit, as the authors noted, with a two-fold error range.

Does anyone care?

Now you’re just being awkward. You should be grateful to be made to picture for a moment tens of millions of proteins jiggling around in little sacs so small you could get tens of thousands of these cells on the head of a pin. And somehow, in that heaving molecular city, each protein manages to carry out its own task so that the cell works. It is quite staggering.

Mention of tasks leads to the other question Ho et al looked at: how many copies are there of the different types of protein? We know from its DNA sequence that this yeast has about 6,000 genes (Saccharomyces Genome Database). So that’s at least 6,000 different proteins. Not surprisingly, it turns out that about two thirds of them are in the middle in terms of abundance — i.e. there’s between 1,000 and 10,000 molecules of each sort per cell. The rest are either low abundance (up to about 800 molecules per cell) or at the high end — 140,000 to 750,000, i.e. somewhere in the region of half a million copies of each type of protein.

Does this distribution make sense in terms of what these proteins do?

You know the answer because if it didn’t the Toronto team wouldn’t have got their work published but, indeed, proteins present in large numbers are, for example, part of the machinery that makes new proteins (so they’re slaving away all the time) whereas, those present in small numbers do things like repair and replicate DNA and drive cells to divide — important jobs but ones that are only intermittently needed.

These results aren’t going to turn science on its head but it is awe-inspiring when a piece of work really brings us face-to-face with stunning complexity of biology. And if it takes a bonkers headline to catch our eye, so be it!


Ho, B. et al. (2018). Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome. Cell Systems. Published online: January 23, 2018.


The answer to … everything is …

42, as all fans of Douglas Adams and The Hitchhiker’s Guide to the Galaxy will instantly tell you. In the years before he produced his best-seller, a chance contact with Footlights had drawn me into spending many merry evenings with Douglas in The Baron of Beef public house, more or less opposite St John’s College, where he was studying – sporadically, he would doubtless have said – English.

Had a piece of work that’s just come out in The British Medical Journal been published 40-odd years earlier I suspect I would have mentioned it at one of those gatherings – early on before rational thought took alcohol-fuelled flight. It’s interesting because it says we can put off dying from the things that kill most of us (heart failure and cancer) by what Jason Gill, Carlos Celis-Morales and their pals in the University of Glasgow call ‘active commuting’. By that they mean cycling to work is good. Physical inactivity (e.g., spending happy evenings in the pub) is bad.

Had I mentioned it, rather than coming up with an entirely whimsical response to the “ultimate question of life”, Douglas would have spotted that the key to hanging on to life is “on your bike”. Just think: if Jason & Chums had got a move on, history would have been changed. Pondering all their evidence over several pints of The Baron’s best, it’s hard to imagine Douglas coming up with any title other than The Biker’s Guide to the Galaxy.

But hang on: isn’t this just another pretty useless survey?

Maybe – but for several reasons it’s hard to write it off.

First, there have been quite a few studies over the years showing that cycling is good for you.

Second, this is one was huge – so more likely to be meaningful. Using the UK Biobank data it looked for links between death and the way in which more than a quarter of a million people got to work.

Third, and the thing that really caught my eye: the key finding stuck out like the proverbial sore thumb. Usually in surveys of things that might affect our health any trends are difficult to spot: eating X makes you live 10% longer or be 5% less likely to get Y … bla, bla, bla. But here you didn’t need to peer: cycling (a ‘long distance’) to work makes you 40% less likely to die – from anything!

Below is just one bit of their data: I’ve re-drawn it with the cycling result in red but it hardly needs that to highlight the difference between it, walking (blues) and the ‘non-actives’ (green: car or public transport). It’s true, a bit of biking can help (orange: mixed mode cycling) but the really clear benefit comes from cycling (lots) – though they don’t actually say how many miles per day counts as ‘long-distance cycling.’ Modes of transport and distances were self-reported and the latter just divided into ‘long’ and ‘short’.

How you get to work impacts your life expectancy. The figure shows the risk of death from all causes as hazard ratios (ratio of the hazard rates of death): the reference (hazard ratio 1) is travel by car or public transport (green). (From Celis-Morales, C. et al., 2017).

So what of heart failure and cancer?

Perhaps not surprisingly then, commuting by cycling was also associated with a markedly lower risk both of getting heart disease or cancer and of dying therefrom. To give one specific figure: cycling to work lowers the chance of developing cancer by 45%.

It can’t be the lycra

These are horrible studies to undertake, partly because they rely on human beings telling the truth but also because of what are called ‘confounding factors.’ For example, if someone plays a lot of sport and eats sensibly, you might guess they’d be relatively healthy, regardless of how they get to work. Conversely for smoking. However, Celis-Morales & Co did their best to allow for such things and therefore to come up with results that mean something.

But, if you take their findings at face value there remains a key question that the authors do not mention: what is it about biking that’s such a life-saver (assuming you don’t get knocked-off and squashed)? It’s a real puzzle because walking is generally held to be very good for you whilst cycling is the most energy-efficient means of transport devised by man. Both activities use nearly all of your muscles, albeit that biking really works out your glutes and quadriceps, but because bikes are so efficient you use less energy.

Counting the calories

You can do the sums – i.e. work out how many calories used walking, running or cycling on Wolfram Alfra. It’s just confirmed that my daily bike commute does indeed use about half the number of calories required for the same walk.

If you take your commute as training you would suppose that expending more energy (i.e. walking rather than biking) would strengthen your heart and cardiovascular system – and indeed this study shows commuters who did more than 6 miles a week at ‘typical walking pace of three miles an hour’ slightly lowered their risk of cardiovascular disease. But cycling was far more beneficial.

As to cancer, beyond the simplistic notion that fitness = strengthening your immune system and hence capacity resist abnormal cell growth, it’s hard to see a mechanism for biking being so much better than anything else.

So, never mind the science …

Away with Ford Prefect and latter-day variants, automotive  or otherwise! On your bike!! And if you can do it with a friend on a tandem, so much the better!!! Though if you’re going to do it à deux, it might be worth recalling that the Jatravartids had the wisdom to invent the aerosol deodorant before the wheel.


Celis-Morales, C. et al. (2017). Association between active commuting and incident cardiovascular disease, cancer, and mortality: prospective cohort study. British Medical Journal 357 doi: